A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A step forward in the diagnosis of urinary tract infections: from machine learning to clinical practice. | LitMetric

Objectives: Urinary tract infections (UTIs) are common infections within the Emergency Department (ED), causing increased laboratory workloads and unnecessary antibiotics prescriptions. The aim of this study was to improve UTI diagnostics in clinical practice by application of machine learning (ML) models for real-time UTI prediction.

Methods: In a retrospective study, patient information and outcomes from Emergency Department patients, with positive and negative culture results, were used to design models - 'Random Forest' and 'Neural Network' - for the prediction of UTIs. The performance of these predictive models was validated in a cross-sectional study. In a quasi-experimental study, the impact of UTI risk assessment was investigated by evaluating changes in the behaviour of clinicians, measuring changes in antibiotic prescriptions and urine culture requests.

Results: First, we trained and tested two different predictive models with 8692 cases. Second, we investigated the performance of the predictive models in clinical practice with 962 cases (Area under the curve was between 0.81 to 0.88). The best performance was the combination of both models. Finally, the assessment of the risk for UTIs was implemented into clinical practice and allowed for the reduction of unnecessary urine cultures and antibiotic prescriptions for patients with a low risk of UTI, as well as targeted diagnostics and treatment for patients with a high risk of UTI.

Conclusion: The combination of modern urinalysis diagnostic technologies with digital health solutions can help to further improve UTI diagnostics with positive impact on laboratory workloads and antimicrobial stewardship.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11362637PMC
http://dx.doi.org/10.1016/j.csbj.2024.07.018DOI Listing

Publication Analysis

Top Keywords

clinical practice
16
predictive models
12
urinary tract
8
tract infections
8
machine learning
8
emergency department
8
laboratory workloads
8
improve uti
8
uti diagnostics
8
performance predictive
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!