Materials with near-infrared (near-IR) luminescence are desirable for applications in communications and sensing, as well as biomedical diagnostics and imaging. The most used inorganic near-IR emitters rely on precise doping of host crystal structures with select rare-earth or transition metal ions. Recently, another class of materials with intrinsic near-IR emission has been reported. The compositions of these materials were initially described as vacancy-ordered halide double perovskites CsMoCl and CsWCl, but further investigation by some of us on the compound reported as CsWCl revealed an oxyhalide instead, with a composition CsWO Cl , where 1 < < 2. Here we demonstrate that the Mo compounds similarly possess the composition CsMoO Cl or CsMoO Br where 1 < < 2. Preparing the pure halide appears harder for Mo than for W, and we have not succeeded in doing so. The distinctly different composition requires the coordination environment and oxidation state for the Mo and W centers to be reconsidered from what was assumed for the pure halides. In this work, we examine the mechanism for near-IR emission in these materials given their true structures and compositions. We demonstrate that the luminescence is due to the specific d-orbital splitting caused by the presence of oxygen in the distorted [MOX] octahedra (X is Cl or Br). The fine structure in the emission spectra at low temperatures has been resolved and is attributed to vibronic coupling to the Mo-O and W-O bond stretches. Understanding the true structure and composition of these interesting materials, besides explaining the near-IR luminescence, suggests how this desirable emission can be realized and manipulated.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11360127 | PMC |
http://dx.doi.org/10.1021/acs.chemmater.4c00856 | DOI Listing |
Materials (Basel)
November 2024
Institute of Chemistry, University of Silesia, Szkolna 9 Street, 40-007 Katowice, Poland.
In the framework of luminescent rare-earth-doped glasses for near-infrared applications, TiO-containing inorganic glasses have been recently demonstrated to be a promising alternative to commercially used high-phonon SiO-based glasses. This study investigates the effect of TiO concentration on the near-infrared spectroscopic properties of Yb ions in multicomponent titanate-germanate glasses. A series of glass samples in the xTiO-(60-x)GeO-BaO-GaO-YbO system (x ranging from 0 to 50 mol%) were synthesized using the melt-quenching technique.
View Article and Find Full Text PDFRSC Chem Biol
December 2024
Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle Lille France
Herein, we report the synthesis, photophysical characterization and validation of iridium(iii)-polypyridine complexes functionalized for click chemistry and bioorthogonal chemistry, as well as their versatile applications as probes in bioimaging studies exploiting metabolic labeling. The designed dyes are conjugated to chemical reporters in a specific manner within cells by CuAAC ligation and display attractive photophysical properties in the UV-visible range. They are indeed highly photostable and emit in the far-red to near-IR region with long lifetimes and large Stokes shifts.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Institute of Physics, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland.
This study presents the results of investigating the interaction between the CeF₃-EuF₃ system and the NaCl-KCl salt melt using spectroscopic methods. It was found that CeF₃ ions undergo no significant changes upon dissolution in the NaCl-KCl melt. In contrast, the dissolution of EuF₃, both individually and within the CeF₃-EuF₃ system, is accompanied by redox reactions leading to the formation of Eu⁺.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2024
State Key Lab of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!