Emissive Alkylated Guanine Analogs as Probes for Monitoring -Alkylguanine-DNA-transferase Activity.

ACS Omega

Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States.

Published: August 2024

AI Article Synopsis

  • hAGT is a key repair protein that protects against DNA damage from alkylguanine lesions and is linked to tumor status and chemotherapy effectiveness.
  • Researchers are investigating new types of guanine analogs as tools to track hAGT activity for better disease diagnosis and treatment.
  • Two specific analogs show promise for optical monitoring of hAGT activity and can be utilized in cell imaging techniques like fluorescence microscopy.

Article Abstract

Human -alkylguanine-DNA-transferase (hAGT) is a repair protein that provides protection from mutagenic events caused by -alkylguanine lesions. As this stoichiometric activity is tissue-specific, indicative of tumor status, and correlated to chemotherapeutic success, tracking the activity of hAGT could prove to be informative for disease diagnosis and therapy. Herein, we explore two families of emissive -methyl- and -benzylguanine analogs based on our previously described and , thieno- and isothiazolo-guanine surrogates, respectively, as potential reporters. We establish that and provide a spectral window to optically monitor hAGT activity, can be used as substrates for the widely used SNAP-Tag delivery system, and are sufficiently bright to be visualized in mammalian cells using fluorescence microscopy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11360037PMC
http://dx.doi.org/10.1021/acsomega.4c05700DOI Listing

Publication Analysis

Top Keywords

emissive alkylated
4
alkylated guanine
4
guanine analogs
4
analogs probes
4
probes monitoring
4
monitoring -alkylguanine-dna-transferase
4
activity
4
-alkylguanine-dna-transferase activity
4
activity human
4
human -alkylguanine-dna-transferase
4

Similar Publications

Next Generation Sequencing-based subtyping and interim- and end of treatment positron emission tomography (i/eot-PET) monitoring have high potential for upfront and on-treatment risk assessment of diffuse large B-cell lymphoma patients. We performed Dana Farber Cancer Institute (DFCI) and LymphGen genetic subtyping for the HOVON84 (n = 208, EudraCT-2006-005174-42) and PETAL (n = 204, EudraCT-2006-001641-33) trials retrospectively combined with DFCI genetic data (n = 304). For all R-CHOP treated patients (n = 592), C5/MCD- and C2/A53-subtypes show significantly worse outcome independent of the international prognostic index.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on blue-emitting gold(I)-NHC chloride complexes with varying alkyl chains, revealing their unique molecular interactions and solid-state characteristics.
  • These complexes demonstrate strong thermal stability and significant blue photoluminescence, with the n-butyl complex (1) showing the highest quantum yield at 22.44%.
  • Computational analyses help clarify the electronic structure and luminescence properties, highlighting the potential applications for these complexes in blue light-emitting devices like LEDs.
View Article and Find Full Text PDF

The role of oxidative stress metabolism during hepatocellular carcinoma (HCC) formation potentially allows for positron emission tomography (PET) imaging of oxidative stress activity for early and precise HCC detection. However, there is currently limited data available on oxidative-stress-related PET imaging for longitudinal monitoring of the pathophysiological changes during HCC formation. This work aimed to explore PET-based longitudinal monitoring of oxidative stress metabolism and determine the sensitivity of [18F]-5-fluoroaminosuberic acid ([18F]FASu) for assessing pathophysiological processes in diethylnitrosamine (DEN) induced rat HCC.

View Article and Find Full Text PDF

This study characterizes the influence of self-assembly conditions on the aggregation pathway and resulting photophysical properties of one-dimensional aggregates of the simple imide-substituted perylene diimide, N, N'-didodecyl-3,4,9,10-perylenedicarboximide (ddPDI). We show that ddPDI, which has symmetric alkyl chains at the imide positions, assembles into fibers with distinct morphology, emission spectra, and temperature-dependent behavior as a function of preparation conditions. In all conditions explored, aggregates are one-dimensional; however, assembly conditions can bias formation to either J-like or H-like aggregates.

View Article and Find Full Text PDF

Engineering an Ionic Aggregation-Induced Luminescence-Labeled Fluorescence Lateral Flow Immunoassay for C-Reactive Protein in Human Plasma.

Anal Chem

December 2024

Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (NWNU), Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China.

The surge of lateral flow immunoassays (LFAs) stimulates researchers to explore the novel vibrant aggregation-induced emission luminogen (AIEgen)-doped nanoparticles to improve the accuracy and reliability of LFAs. However, the loading amount of AIEgens currently used for the LFA in microspheres is limited due to their symmetrical large conjugated skeleton structure, which significantly reduces the fluorescence brightness of the signal reporter in the LFA. Herein, an ionic AIEgens with a donor-acceptor type was developed as the signal reporter of the LFA for C-reactive protein (CRP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!