Brucellosis is a chronic and debilitating disease in humans, causing great economic losses in the livestock industry. Making an effective vaccine is one of the most important concerns for this disease. The new mRNA vaccine technology due to its accuracy and high efficiency has given promising results in various diseases. The objective of this research was to create a novel mRNA vaccine with multiple epitopes targeting . Seventeen antigenic proteins and their appropriate epitopes were selected with immunoinformatic tools and surveyed in terms of toxicity, allergenicity, and homology. Then, their presentation and identification by MHC cells and other immune cells were checked with valid tools such as molecular docking, and a multi-epitope protein was modeled, and after optimization, mRNA was analyzed in terms of structure and stability. Ultimately, the immune system's reaction to this novel vaccine was evaluated and the results disclosed that the designed mRNA construct can be an effective and promising vaccine that requires laboratory and clinical trials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11365029 | PMC |
http://dx.doi.org/10.1177/11779322241272404 | DOI Listing |
J Med Virol
January 2025
Centro Internacional de Vacunas, Cali, Colombia.
A total of 5011 adult volunteers attending vaccination centers in different regions of Colombia were enrolled in a 1-year prospective observational cohort study to evaluate the immunogenicity and effectiveness of SARS-CoV-2-based vaccines as part of a National Vaccine Program established to contain the COVID-19 pandemic. Following informed consent, 5,011 participants underwent a sociodemographic survey and PCR testing to assess SARS-CoV-2 infection. Blood samples were collected, and serum fractions were obtained from a participant subsample (n = 3441) at six-time points to assess virus-specific IgG responses to the Spike protein, its Receptor Binding Domain, and the Nucleoprotein by ELISA.
View Article and Find Full Text PDFTheranostics
January 2025
Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
Circular RNA (circRNA) has gained attention as a promising platform for mRNA vaccines due to its stability, sustained protein expression, and intrinsic immunostimulatory properties. This study aimed to design and optimize a circRNA cancer vaccine platform by screening for efficient internal ribosome entry sites (IRES) and enhancing circRNA translation efficiency for improved cancer immunotherapy. We screened 29 IRES elements to identify the most efficient one for immune cell translation, ultimately discovering the A (EV-A) IRES.
View Article and Find Full Text PDFNarra J
December 2024
Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia.
The waning immunity following the COVID-19 vaccination become a significant concern and the immunological dynamics of vaccine-induced antibodies after vaccination need to be explored. The aim of this study was to compare anti-SARS-CoV-2 receptor-binding domain (RBD) antibody levels before and after a booster dose with heterologous COVID-19 vaccine and to identify factors influencing the levels after receiving the booster dose. A cross-sectional study was conducted in which individuals who received primary doses of CoronaVac and a booster dose with an mRNA-based vaccine were recruited using a purposive sampling technique.
View Article and Find Full Text PDFFEBS Open Bio
January 2025
Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary.
Malaria, a life-threatening disease caused by Plasmodium parasites, continues to pose a significant global health threat, with nearly 250 million infections and over 600 000 deaths reported annually by the WHO. Fighting malaria is particularly challenging partly due to the complex life cycle of the parasite. However, technological breakthroughs such as the development of the nucleoside-modified mRNA lipid nanoparticle (mRNA-LNP) vaccine platform, along with the discovery of novel conserved Plasmodium antigens such as the E140 protein, present new opportunities in malaria prevention.
View Article and Find Full Text PDFMol Pharm
January 2025
Ningbo No.2 Hospital, Ningbo, Zhejiang 315010, P. R. China.
At the end of 2019, SARS-CoV-2 emerged and rapidly spread, having a profound negative impact on human health and socioeconomic conditions. In response to this unprecedented global health crisis, significant advancements were made in the mRNA vaccine technology. In this study, we have compared the difference between two SARS-CoV-2 receptor-binding domain (RBD) mRNA-Lipid nanoparticle (LNP) vaccines prepared from two different ionizable cationic lipids: ALC-0315 and MC3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!