Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Bietti crystalline dystrophy (BCD) is an autosomal recessive inherited retinal disease (IRD) and its early precise diagnosis is much challenging. This study aims to diagnose BCD and classify the clinical stage based on ultra-wide-field (UWF) color fundus photographs (CFPs) via deep learning (DL). All CFPs were labeled as BCD, retinitis pigmentosa (RP) or normal, and the BCD patients were further divided into three stages. DL models ResNeXt, Wide ResNet, and ResNeSt were developed, and model performance was evaluated using accuracy and confusion matrix. Then the diagnostic interpretability was verified by the heatmaps. The models achieved good classification results. Our study established the largest BCD database of Chinese population. We developed a quick diagnosing method for BCD and evaluated the potential efficacy of an automatic diagnosis and grading DL algorithm based on UWF fundus photography in a Chinese cohort of BCD patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11365386 | PMC |
http://dx.doi.org/10.1016/j.isci.2024.110579 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!