Background: Deep learning reconstruction (DLR) with denoising has been reported as potentially improving the image quality of magnetic resonance imaging (MRI). Multi-modal MRI is a critical non-invasive method for tumor detection, surgery planning, and prognosis assessment; however, the DLR on multi-modal glioma imaging has not been assessed.
Purpose: To assess multi-modal MRI for glioma based on the DLR method.
Material And Methods: We assessed multi-modal images of 107 glioma patients (49 preoperative and 58 postoperative). All the images were reconstructed with both DLR and conventional reconstruction methods, encompassing T1-weighted (T1W), contrast-enhanced T1W (CE-T1), T2-weighted (T2W), and T2 fluid-attenuated inversion recovery (T2-FLAIR). The image quality was evaluated using signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and edge sharpness. Visual assessment and diagnostic assessment were performed blindly by neuroradiologists.
Results: In contrast with conventionally reconstructed images, (residual) tumor SNR for all modalities and tumor to white/gray matter CNR from DLR images were higher in T1W, T2W, and T2-FLAIR sequences. The visual assessment of DLR images demonstrated the superior visualization of tumor in T2W, edema in T2-FLAIR, enhanced tumor and necrosis part in CE-T1, and fewer artifacts in all modalities. Improved diagnostic efficiency and confidence were observed for preoperative cases with DLR images.
Conclusion: DLR of multi-modal MRI reconstruction prototype for glioma has demonstrated significant improvements in image quality. Moreover, it increased diagnostic efficiency and confidence of glioma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/02841851241273114 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!