AI Article Synopsis

  • RNA modifications, known as "epitranscriptome" alterations, are crucial in regulating various cellular networks and are particularly relevant in cardiovascular diseases, especially during the progression of atherosclerosis.
  • Key RNA modifications include m6A, m5C, m1A, m7G, Ψ, and A-to-I editing, with ongoing research focused on targeting enzymes related to these modifications, like METTL3 and FTO, using small molecule inhibitors or activators.
  • Identifying drug candidates for RNA epitranscriptome modulation presents a major challenge, but promising findings include Panax notoginseng and rhein, which may enhance mRNA m6A levels and provide insights into developing biomarkers for better prediction

Article Abstract

RNA modifications have recently gained great attention due to their extensive regulatory effects in a wide range of cellular networks and signaling pathways. In cardiovascular diseases (CVDs), several RNA changes, called "epitranscriptome" alterations, are found in all RNA molecules (tRNA, rRNA, mRNA, and ncRNAs). Unlike the epigenetic process, which influences the progression of atherosclerosis (AS), its transcriptional and post-transcriptional regulatory mechanisms are still unknown. Here, we described the main epitranscriptome signs to provide new insights into AS, including m6A, m5C, m1A, m7G, Ψ, and A-to-I editing. Moreover, we also included all current known RNA-- modifier-targeting, including small molecular inhibitors or activators, mainly designed against m6A- and m5A-related enzymes, such as METTL3, FTO, and ALKBH5. Finally, since only a few drugs, such as azacitidine and tazemetostat, targeting the DNA epigenome, have been approved by the FDA, the next challenge would be to identify molecules for targeting the RNA epitranscriptome. To date, total Panax notoginseng total saponin could reduce vascular hyperplasia via Wilms' tumor-associated protein-1 m6A-dependent. Indeed, a virtual screening allowed us to individuate a phytomolecule, the rhein, which acts as an FTO inhibitor by increasing mRNA m6A levels. In this review, we highlighted the RNA epitranscriptome pathways implicated in AS, describing their biological functions and their connections to the disease. The identification of epitranscriptome- sensitive pathways could provide novel opportunities to find predictive, diagnostic, and prognostic biomarkers for precision medicine.

Download full-text PDF

Source
http://dx.doi.org/10.2174/0109298673322775240822051304DOI Listing

Publication Analysis

Top Keywords

rna epitranscriptome
8
rna
5
epitranscriptome
4
epitranscriptome novel
4
novel regulatory
4
regulatory layer
4
layer atherosclerosis
4
atherosclerosis progression
4
progression rna
4
rna modifications
4

Similar Publications

Tgt is the enzyme modifying the guanine (G) in tRNAs with GUN anticodon to queuosine (Q). is required for optimal growth of in the presence of sub-lethal aminoglycoside concentrations. We further explored here the role of the Q34 in the efficiency of codon decoding upon tobramycin exposure.

View Article and Find Full Text PDF

Advanced reactivity-based sequencing methods for mRNA epitranscriptome profiling.

RSC Chem Biol

December 2024

Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China

Currently, over 170 chemical modifications identified in RNA introduce an additional regulatory attribute to gene expression, known as the epitranscriptome. The development of detection methods to pinpoint the location and quantify these dynamic and reversible modifications has significantly expanded our understanding of their roles. This review goes deep into the latest progress in enzyme- and chemical-assisted sequencing methods, highlighting the opportunities presented by these reactivity-based techniques for detailed characterization of RNA modifications.

View Article and Find Full Text PDF

m6A RNA modification pathway: orchestrating fibrotic mechanisms across multiple organs.

Brief Funct Genomics

January 2025

Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwaizheng Street, Donghu District, Nanchang 330006, China.

Organ fibrosis, a common consequence of chronic tissue injury, presents a significant health challenge. Recent research has revealed the regulatory role of N6-methyladenosine (m6A) RNA modification in fibrosis of various organs, including the lung, liver, kidney, and heart. In this comprehensive review, we summarize the latest findings on the mechanisms and functions of m6A modification in organ fibrosis.

View Article and Find Full Text PDF

The balance between CD8 T cells and regulatory T (Treg) cells in the tumor microenvironment (TME) plays a crucial role in the immune checkpoint inhibition (ICI) therapy in gastric carcinoma (GC). However, related factors leading to the disturbance of TME and resistance to ICI therapy remain unknown. In this study, we applied N6-methyladenosine (m6A) small RNA Epitranscriptomic Microarray and screened out 3'tRF-AlaAGC based on its highest differential expression level and lowest inter-group variance.

View Article and Find Full Text PDF

E4F1 coordinates pyruvate metabolism and the activity of the elongator complex to ensure translation fidelity during brain development.

Nat Commun

January 2025

Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France.

Pyruvate metabolism defects lead to severe neuropathies such as the Leigh syndrome (LS) but the molecular mechanisms underlying neuronal cell death remain poorly understood. Here, we unravel a connection between pyruvate metabolism and the regulation of the epitranscriptome that plays an essential role during brain development. Using genetically engineered mouse model and primary neuronal cells, we identify the transcription factor E4F1 as a key coordinator of AcetylCoenzyme A (AcCoA) production by the pyruvate dehydrogenase complex (PDC) and its utilization as an essential co-factor by the Elongator complex to acetylate tRNAs at the wobble position uridine 34 (U).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!