Human amylin is an inherently disordered protein whose ability to form amyloid fibrils is linked to the onset of type II diabetes. Graphitic nanomaterials have potential in managing amyloid diseases as they can disrupt protein aggregation processes in biological settings, but optimising these materials to prevent fibrillation is challenging. Here, we employ bias-exchange molecular dynamics simulations to systematically study the structure and adsorption preferences of amylin on graphitic nanoflakes that vary in their physical dimensions and surface functionalisation. Our findings reveal that nanoflake size and surface oxidation both influence the structure and adsorption preferences of amylin. The purely hydrophobic substrate of pristine graphene (PG) nanoflakes encourages non-specific protein adsorption, leading to unrestricted lateral mobility once amylin adheres to the surface. Particularly on larger PG nanoflakes, this induces structural changes in amylin that may promote fibril formation, such as the loss of native helical content and an increase in β-sheet character. In contrast, oxidised graphene nanoflakes form hydrogen bonds between surface oxygen sites and amylin, and as such restricting protein mobility. Reduced graphene oxide (rGO) flakes, featuring lower amounts of surface oxidation, are amphiphilic and exhibit substantial regions of bare carbon which promote protein binding and reduced conformational flexibility, leading to conservation of the native structure of amylin. In comparison, graphene oxide (GO) nanoflakes, which are predominantly hydrophilic and have a high degree of surface oxidation, facilitate considerable protein structural variability, resulting in substantial contact area between the protein and GO, and subsequent protein unfolding. Our results indicate that tailoring the size, oxygen concentration and surface patterning of graphitic nanoflakes can lead to specific and robust protein binding, ultimately influencing the likelihood of fibril formation. These atomistic insights provide key design considerations for the development of graphitic nanoflakes that can modulate protein aggregation by sequestering protein monomers in the biological environment and inhibit conformational changes linked to amyloid fibril formation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4nr01315h | DOI Listing |
Micromachines (Basel)
October 2024
Department of Chemical, Biological, and Battery Engineering, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea.
The demand for safer, sustainable, and economical energy storage devices has motivated the development of lithium dual-ion batteries (Li_DIBs) for large-scale storage applications. For the Li_DIBs, expanded graphite (EG) cathodes are valuable as anion intercalation host frameworks to fabricate safer and more cost-effective devices. In this study, three different carbon cathode materials, including microwave-treated expanded graphite (MW-EG), ball-milled expanded graphite (BM-EG), and high-temperature-carbonized carbon nanoflakes (CNFs), were developed by different synthesis methods.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2024
Chair for Photonics and Optoelectronics, Nano-Institute Munich, Physics Department, Ludwig Maximilians-Universität München, Königinstr. 10, 80539 Munich, Germany.
In photocatalysis, photogenerated charge separation is pivotal and can be achieved through various mechanisms. Building heterojunctions is a promising method to enhance charge separation, where effective contact and charge exchange between heterojunction components remains challenging. Mostly used synthesis processes for making heterostructures require high temperatures, difficult processes, or expensive materials.
View Article and Find Full Text PDFSmall
November 2024
Department of Physics, City University of Hong Kong, Hong Kong, 999077, China.
Deposition of low-cost, efficient, and environmentally friendly graphitic carbon nitride (g-CN) films as photoanodes is a crucial step for constructing photoelectrochemical (PEC) cells and exploring their PEC performance. Currently, the improvement of the photocurrent density of g-CN films is badly needed for their practical applications in PEC water splitting. Enhancing the g-CN crystallinity by optimizing their synthesis conditions only through screening appropriate reactant precursors is insufficient for this purpose.
View Article and Find Full Text PDFTalanta
February 2025
Forensic Science Innovation and Service Center, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
In this study, a simple, portable, unibody semi-flow injection system was coupled with a screen-printed electrode (SFI/SPE) for the on-site electrochemical screening of sibutramine (SBM) in food supplements. The SFI was fabricated by laser engraving acrylic plastic and was attached to a modified SPE with double-sided adhesive tape. The SPE was modified with a nanocomposite of nitrogen-doped graphene nanoflakes and carbon nanotubes synthesized using hydrothermal and ultrasonic methods.
View Article and Find Full Text PDFBiosensors (Basel)
October 2024
State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710054, China.
In this work, we report a study of a zinc sulfide (ZnS) nanocrystal and reduced graphene oxide (RGO) nanocomposite-based non-enzymatic uric acid biosensor. ZnS nanocrystals with different morphologies were synthesized through a hydrothermal method, and both pure nanocrystals and related ZnS/RGO were characterized with SEM, XRD and an absorption spectrum and resistance test. It was found that compared to ZnS nanoparticles, the ZnS nanoflakes had stronger UV light absorption ability at the wavelength of 280 nm of UV light.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!