Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Fiberbanks refer to a type of fibrous sediment originated by the forestry and wood pulping industry in Sweden. These anthropogenic sediments are significantly contaminated with potentially toxic elements, and a diverse array of organic pollutants. Additionally, these sediments are of environmental concern due to their potential role in greenhouse gas emissions. Given the environmental risks posed by these sediments, the development of effective remediation strategies is of critical importance. However, no specialized methods have been established yet for the cleanup of this specific type of contaminated sediments. To identify effective fungal species for the mycoremediation of the fiberbank substrate, we performed a detailed screening experiment. In this research, we primarily aimed at assessing both the growth capacity and the proficiency in degrading organic pollutants of 26 native white-rot fungi (WRF) species. These species were sourced from natural forest environments in northern Sweden. The experimental setup involved evaluating the WRF on plates containing fiberbank material with a central Hagem-agar disc to closely monitor the interaction of these species with fiberbank substrates. Among the fungi tested, exhibited the highest growth area percentage at 72%, followed by at 68% and at 67%. For the removal of 2-3 ring polycyclic aromatic hydrocarbons (PAHs), led with 68%, with at 57% and at 49%. Regarding the removal percentage of 4-6 ring PAHs, showed the highest efficiency at 44%, followed by at 40% and at 28%.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/21655979.2024.2396642 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!