Ciliary neurotrophic factor (CNTF) acts as a potent neuroprotective agent in neuronal survival and regeneration, and can also induce the differentiation of several stem cells into neurons, which highlights the broad application of CNTF in biomedicine. However, large-scale production of bioactive recombinant human CNTF protein remains to be explored. Herein, this study aims to express a bioactive human CNTF protein on a large scale by genetically engineering a silk gland bioreactor of silkworm. Our results showed that CNTF protein was successfully expressed in the middle silk gland (MSG) of silkworm, which can be secreted into the silks with the amount of 3.2 mg/g cocoons. The fabrication of human CNTF-functionalized silk material was able to promote proliferation and migration of neural cells when compared to the natural silk protein. Importantly, this functional silk material could also facilitate neurite outgrowth of mouse retinal ganglion cell (RGC-5) cells. All these data demonstrated a high bioactivity of the recombinant human CNTF protein expressed in the MSG of silkworm. The further fabrication of different silk materials with CNTF bioactivity will give biomedical applications in tissue engineering and neuroregeneration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1744-7917.13442 | DOI Listing |
Research on serotonin reveals a lack of consensus regarding its role in brain volume, especially concerning biomarkers linked to neurogenesis and neuroplasticity, such as ciliary neurotrophic factor (CNTF), fibroblast growth factor 4 (FGF-4), bone morphogenetic protein 6 (BMP-6), and matrix metalloproteinase-1 (MMP-1) in Alzheimer's disease (AD). This study aimed to investigate the influence of serotonin on brain structure and hippocampal volumes in relation to cognitive functions in AD, as well as its link with biomarkers like CNTF, FGF-4, BMP-6, and MMP-1. Data from 133 ADNI participants with AD included cognitive assessments (CDR-SB), serotonin measurements (Biocrates AbsoluteIDQ p180 kit, UPLC-MS/MS), and neurotrophic factors quantified via multiplex proteomics.
View Article and Find Full Text PDFCell Death Dis
December 2024
Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
Regeneration of injured central nervous system (CNS) axons is highly restricted, leading to permanent neurological deficits. The myristoylated alanine-rich C-kinase substrate (MARCKS) is a membrane-associated protein kinase C (PKC) substrate ubiquitously expressed in eukaryotic cells, plays critical roles in development, brain plasticity, and tissues regeneration. However, little is known about the role of Marcks in CNS axon regeneration.
View Article and Find Full Text PDFAdv Mater
December 2024
Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.
The ability to deliver protein therapeutics in a minimally invasive, safe, and sustained manner, without resorting to viral delivery systems, will be crucial for treating a wide range of chronic injuries and diseases. Among these challenges, achieving axon regeneration and functional recovery post-injury or disease in the central nervous system remains elusive to most clinical interventions, constantly calling for innovative solutions. Here, a thermally responsive hydrogel system utilizing recombinant spider silk protein (spidroin) is developed.
View Article and Find Full Text PDFMedicine (Baltimore)
November 2024
Department of Ophthalmology, Chong Gang General Hospital, Chongqing, China.
Front Immunol
November 2024
Division of Gastrointestinal Pathophysiology, University of Toyama, Toyama, Japan.
It has recently become clear that the gut microbiota influence intestinal motility, intestinal barrier function, and mucosal immune function; therefore, the gut microbiota are deeply involved in the maintenance of intestinal homeostasis. The effects of the gut microbiota on the enteric nervous system (ENS) in the adult intestine, however, remain poorly understood. In the current study, we investigated the effects of the gut microbiota on the ENS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!