Transgenic silkworm expressing bioactive human ciliary neurotrophic factor for biomedical application.

Insect Sci

Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Biological Science Research Center, Southwest University, Chongqing, China.

Published: September 2024

AI Article Synopsis

  • - The study focuses on the large-scale production of bioactive human Ciliary Neurotrophic Factor (CNTF), known for its role in neuronal protection and stem cell differentiation, using a genetically modified silkworm silk gland bioreactor.
  • - Researchers successfully expressed CNTF in the silkworm's middle silk gland, achieving a yield of 3.2 mg of CNTF per gram of silk cocoon, which significantly improved neural cell proliferation and migration compared to natural silk.
  • - The CNTF-functionalized silk material also promoted neurite outgrowth in mouse retinal ganglion cells, suggesting its potential applications in tissue engineering and neuroregeneration.

Article Abstract

Ciliary neurotrophic factor (CNTF) acts as a potent neuroprotective agent in neuronal survival and regeneration, and can also induce the differentiation of several stem cells into neurons, which highlights the broad application of CNTF in biomedicine. However, large-scale production of bioactive recombinant human CNTF protein remains to be explored. Herein, this study aims to express a bioactive human CNTF protein on a large scale by genetically engineering a silk gland bioreactor of silkworm. Our results showed that CNTF protein was successfully expressed in the middle silk gland (MSG) of silkworm, which can be secreted into the silks with the amount of 3.2 mg/g cocoons. The fabrication of human CNTF-functionalized silk material was able to promote proliferation and migration of neural cells when compared to the natural silk protein. Importantly, this functional silk material could also facilitate neurite outgrowth of mouse retinal ganglion cell (RGC-5) cells. All these data demonstrated a high bioactivity of the recombinant human CNTF protein expressed in the MSG of silkworm. The further fabrication of different silk materials with CNTF bioactivity will give biomedical applications in tissue engineering and neuroregeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1744-7917.13442DOI Listing

Publication Analysis

Top Keywords

cntf protein
16
human cntf
12
bioactive human
8
ciliary neurotrophic
8
neurotrophic factor
8
recombinant human
8
silk gland
8
protein expressed
8
msg silkworm
8
silk material
8

Similar Publications

Research on serotonin reveals a lack of consensus regarding its role in brain volume, especially concerning biomarkers linked to neurogenesis and neuroplasticity, such as ciliary neurotrophic factor (CNTF), fibroblast growth factor 4 (FGF-4), bone morphogenetic protein 6 (BMP-6), and matrix metalloproteinase-1 (MMP-1) in Alzheimer's disease (AD). This study aimed to investigate the influence of serotonin on brain structure and hippocampal volumes in relation to cognitive functions in AD, as well as its link with biomarkers like CNTF, FGF-4, BMP-6, and MMP-1. Data from 133 ADNI participants with AD included cognitive assessments (CDR-SB), serotonin measurements (Biocrates AbsoluteIDQ p180 kit, UPLC-MS/MS), and neurotrophic factors quantified via multiplex proteomics.

View Article and Find Full Text PDF

Marcks overexpression in retinal ganglion cells promotes optic nerve regeneration.

Cell Death Dis

December 2024

Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.

Regeneration of injured central nervous system (CNS) axons is highly restricted, leading to permanent neurological deficits. The myristoylated alanine-rich C-kinase substrate (MARCKS) is a membrane-associated protein kinase C (PKC) substrate ubiquitously expressed in eukaryotic cells, plays critical roles in development, brain plasticity, and tissues regeneration. However, little is known about the role of Marcks in CNS axon regeneration.

View Article and Find Full Text PDF

The ability to deliver protein therapeutics in a minimally invasive, safe, and sustained manner, without resorting to viral delivery systems, will be crucial for treating a wide range of chronic injuries and diseases. Among these challenges, achieving axon regeneration and functional recovery post-injury or disease in the central nervous system remains elusive to most clinical interventions, constantly calling for innovative solutions. Here, a thermally responsive hydrogel system utilizing recombinant spider silk protein (spidroin) is developed.

View Article and Find Full Text PDF
Article Synopsis
  • * A thorough search of major scientific databases revealed a significant association between ABCA1 polymorphisms and glaucoma risk, particularly in Asian populations, while no such link was found in Caucasian or mixed groups.
  • * The findings suggest that genetic susceptibility to glaucoma may vary by ethnicity, emphasizing the need to consider these differences in future genetic research.
View Article and Find Full Text PDF

It has recently become clear that the gut microbiota influence intestinal motility, intestinal barrier function, and mucosal immune function; therefore, the gut microbiota are deeply involved in the maintenance of intestinal homeostasis. The effects of the gut microbiota on the enteric nervous system (ENS) in the adult intestine, however, remain poorly understood. In the current study, we investigated the effects of the gut microbiota on the ENS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!