Pulmonary arterial hypertension (PAH) is a chronic and fatal disease characterized by pulmonary vascular remodeling, similar to the 'Warburg effect' observed in cancer, which is caused by reprogramming of glucose metabolism. Oroxylin A (OA), an active compound derived from , which can inhibit glycolytic enzymes [hexokinase 2 (HK2), Lactate dehydrogenase (LDH), and pyruvate dehydrogenase kinase 1 (PDK1) by downregulating aerobic glycolysis to achieve the treatment of liver cancer. To the best of our knowledge, however, the impact of OA on PAH has not been addressed. Consequently, the present study aimed to evaluate the potential protective role and mechanism of OA against PAH induced by monocrotaline (MCT; 55 mg/kg). The mean pulmonary artery pressure (mPAP) was measured using the central venous catheter method; HE and Masson staining were used to observe pulmonary artery remodeling. Non‑targeted metabolomics was used to analyze the metabolic pathways and pathway metabolites in MCT‑PAH rats. Western Blot analysis was employed to assess the levels of glucose transporter 1 (Glut1), HK2), pyruvate kinase (PK), isocitrate dehydrogenase 2 (IDH2), pyruvate dehydrogenase kinase 1(PDK1), and lactate dehydrogenase (LDH) protein expression in both lung tissue samples from MCT‑PAH rats. The results demonstrated that intragastric administration of OA (40 and 80 mg/kg) significantly decreased mPAP from 43.61±1.88 mmHg in PAH model rats to 26.51±1.53 mmHg and relieve pulmonary artery remodeling. Untargeted metabolomic analysis and multivariate analysis indicated abnormal glucose metabolic pattern in PAH model rats, consistent with the Warburg effect. OA administration decreased this effect on the abnormal glucose metabolism. The protein levels of key enzymes involved in glucose metabolism were evaluated by western blotting, which demonstrated that OA could improve aerobic glycolysis and inhibit PAH by decreasing the protein levels of Glut1, HK2, LDH, PDK1 and increasing the protein levels of PK and IDH2. In conclusion, OA decreased MCT‑induced PAH in rats by reducing the Warburg effect.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11391512 | PMC |
http://dx.doi.org/10.3892/mmr.2024.13319 | DOI Listing |
Hormones (Athens)
January 2025
LABIOEX-Exercise Biology Lab, Department of Health Sciences, UFSC-Federal University of Santa Catarina, Araranguá, SC, Brazil.
The endocannabinoid system (ECS), regulating such processes as energy homeostasis, inflammation, and muscle function, centers around cannabinoid receptors, including CB1. These receptors are mainly located in the central nervous system and skeletal muscles. Hyperactivity of CB1 receptors is linked to metabolic disorders and chronic inflammation, highlighting their potential as therapeutic targets for muscle hypertrophy and metabolic health.
View Article and Find Full Text PDFPharmacol Rep
January 2025
Research Laboratory CoreLab of the Medical University of Lodz, Łódź, Poland.
Background: The current study investigated the effects of high-fat diet on acute response to 3,4-methylenedioxypyrovalerone (MDPV) in mice. MDPV is a beta-cathinone derivative endowed with psychostimulant activity. Similarly to recreational substances, consumption of palatable food stimulates the mesolimbic dopaminergic system, resulting in neuroadaptive changes.
View Article and Find Full Text PDFPhysiol Rev
January 2025
Metabolism, Obesity, and Nutrition Lab, School of Health, Concordia University, Montréal, Québec, Canada.
Adult males and females have markedly different body composition, energy expenditure, and have different degrees of risk for metabolic diseases. A major aspect of metabolic regulation involves the appropriate storage and disposal of glucose and fatty acids. The use of sophisticated calorimetry, tracer, and imaging techniques have provided insight into the complex metabolism of these substrates showing that the regulation of these processes varies tremendously throughout the day, from the overnight fasting condition to meal ingestion, to the effects of physical activity.
View Article and Find Full Text PDFHistochem Cell Biol
January 2025
Medical Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt.
Gestational diabetes mellitus (GDM) significantly disrupts placental structure and function, leading to complications such as intrauterine growth restriction (IUGR) and preeclampsia. This study aimed to investigate the effects of GDM on placental histology, angiogenesis, and oxidative stress, as well as evaluate metformin's protective role in mitigating these changes. A total of 60 pregnant Sprague-Dawley rats were divided into four groups: control, metformin-treated, GDM, and GDM with metformin.
View Article and Find Full Text PDFJ Med Virol
February 2025
Xiangya School of Public Health, Central South University, Changsha, China.
Patients with diabetes are at increased risk of HBV infection; however, the effects of HBV infection and anti-HBV therapy on the management of type 1 diabetes (T1D), type 2 diabetes (T2D), and latent autoimmune diabetes in adults (LADA) remain unclear. From 2016 to 2023, we recruited a multicenter cohort of 355 HBV-infected inpatients, including 136 with T1D, 140 with T2D, and 79 with LADA. The control group included 525 HBV-uninfected inpatients, comparing 171 with T1D, 204 with T2D and 150 with LADA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!