Silicate-based multicomponent glasses are of high interest for technical applications due to their tailored properties, such as an adaptable refractive index or coefficient of thermal expansion. However, the production of complex structured parts is associated with high effort, since glass components are usually shaped from high-temperature melts with subsequent mechanical or chemical postprocessing. Here for the first time the fabrication of binary and ternary multicomponent glasses using doped nanocomposites based on silica nanoparticles and photocurable metal oxide precursors as part of the binder matrix is presented. The doped nanocomposites are structured in high resolution using UV-casting and additive manufacturing techniques, such as stereolithography and two-photon lithography. Subsequently, the composites are thermally converted into transparent glass. By incorporating titanium oxide, germanium oxide, or zirconium dioxide into the silicate glass network, multicomponent glasses are fabricated with an adjustable refractive index n between 1.4584-1.4832 and an Abbe number V of 53.85-61.13. It is further demonstrated that by incorporating 7 wt% titanium oxide, glasses with ultralow thermal expansion can be fabricated with so far unseen complexity. These novel materials enable for the first time high-precision lithographic structuring of multicomponent silica glasses with applications from optics and photonics, semiconductors as well as sensors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202407630 | DOI Listing |
Light Sci Appl
January 2025
State Key Laboratory of Luminescent Materials and Devices, and Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Materials Science and Engineering, South China University of Technology, 510640, Guangzhou, China.
Visible light microlasers are essential building blocks for integrated photonics. However, achieving low-threshold (μW), continuous-wave (CW) visible light lasing at room temperature (RT) has been a challenge because of the formidable requirement of population inversion at short wavelengths. Rare-earth (RE)-activated microcavities, featuring high-quality factor (Q) and small mode volume of whispering gallery modes, offer a great opportunity for achieving infrared-to-visible upconversion (UC) lasing.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Wuhan National High Magnetic Field Center and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
Physical vapor deposition (PVD) at an appropriate temperature has been shown to produce ultrastable glass by the mechanism of surface accelerated diffusion. Recently, high-entropy materials have been discovered to display slower atomic diffusion due to the multicomponent high-entropy effects. How this delayed atomic motion influences the formation and stability of PVD glass remains elusive.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195, USA.
Vitrimer is a new, exciting class of sustainable polymers with healing abilities due to their dynamic covalent adaptive networks. However, a limited choice of constituent molecules restricts their property space and potential applications. To overcome this challenge, an innovative approach coupling molecular dynamics (MD) simulations and a novel graph variational autoencoder (VAE) model for inverse design of vitrimer chemistries with desired glass transition temperature (T) is presented.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Institute of Chemistry, University of Silesia, Szkolna 9 Street, 40-007 Katowice, Poland.
In the framework of luminescent rare-earth-doped glasses for near-infrared applications, TiO-containing inorganic glasses have been recently demonstrated to be a promising alternative to commercially used high-phonon SiO-based glasses. This study investigates the effect of TiO concentration on the near-infrared spectroscopic properties of Yb ions in multicomponent titanate-germanate glasses. A series of glass samples in the xTiO-(60-x)GeO-BaO-GaO-YbO system (x ranging from 0 to 50 mol%) were synthesized using the melt-quenching technique.
View Article and Find Full Text PDFTrials
November 2024
QIMR Berghofer Medical Research Institute, Brisbane, Australia.
Background: Opisthorchis viverrini (OV) and soil-transmitted helminths (STH) are two of the most common helminths contributing to the Neglected Tropical Disease (NTDs) burden in the Lower Mekong Basin. Although mass drug administration is the cornerstone of control programs to reduce morbidity caused by these infections, this approach has limitations in preventing re-infections. Elimination requires additional measures such as reservoir host treatment, improved hygiene and health education to reinforce MDA's impact.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!