This review article explores the fascinating world of chitosan coating applied to seeds and its profound impacts on enhancing the germination process and growth performance of plants. Chitosan, a biodegradable and non-toxic polysaccharide derived from chitin, has shown remarkable potential in seed treatment due to its bioactive properties. The review discusses the mechanisms of chitosan's effect on plant germination including promoting water uptake, enhancing nutrient absorption, and protecting seeds from biotic and abiotic stresses. Moreover, it evaluates the effects of chitosan on plant growth parameters such as root development, shoot growth, chlorophyll content, and overall yield. The review also discusses the sustainable aspects of chitosan coatings in agriculture, emphasizing their eco-friendly nature and potential for reducing reliance on synthetic chemicals. Overall, the findings underscore the significant benefits of chitosan-coated seeds in improving the overall performance of plants, paving the way for a greener and more productive agricultural future. Finally, the article will conclude with a SWOT analysis discussing the strengths, weaknesses, opportunities, and threats of this technology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.134750 | DOI Listing |
PLoS Pathog
January 2025
Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.
Gram-negative bacterial pathogens inject effector proteins inside plant cells using a type III secretion system. These effectors manipulate plant cellular functions and suppress the plant immune system in order to promote bacterial proliferation. Despite the fact that bacterial effectors are exogenous threatening proteins potentially exposed to the protein degradation systems inside plant cells, effectors are relative stable and able to perform their virulence functions.
View Article and Find Full Text PDFPLoS One
January 2025
Wuzhou University, College of Food and Pharmaceutical Engineering, Guangxi, P. R. China.
Ginsenosides are the most important secondary metabolites of ginseng. Ginseng has developed certain insect resistance properties during the course of evolutionary environmental adaptation. However, the mechanism underlying the insect resistance of ginseng is poorly understood.
View Article and Find Full Text PDFNew Phytol
January 2025
North Florida Research and Education Center, University of Florida, 155 Research Road, Quincy, FL, 32351, USA.
Ectomycorrhizal fungi (EMF) play a crucial role in facilitating plant nutrient uptake from the soil although inorganic nitrogen (N) can potentially diminish this role. However, the effect of inorganic N availability and organic matter on shaping EMF-mediated plant iron (Fe) uptake remains unclear. To explore this, we performed a microcosm study on Pinus taeda roots inoculated with Suillus cothurnatus treated with +/-Fe-coated sand, +/-organic matter, and a gradient of NHNO concentrations.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
January 2025
National Animal Disease Center, Agricultural Research Service, USDA, Ames, IA, USA.
Three novel strains within the genus (29887, 29892 and 29896) were isolated from healthy pigs during routine veterinary physical exams. All three strains were non-motile and non-spore-forming Gram-positive cocci. The complete genome of each strain was attained, and phylogenetic analyses were performed.
View Article and Find Full Text PDFInt Microbiol
January 2025
State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
Cultivable microbial communities associated with plants inhabiting extreme environments have great potential in biotechnological applications. However, there is a lack of knowledge about these microorganisms from Bryophyllum pinnatum (which survives in severely barren soil) and their ability to promote plant growth. The present study focused on the isolation, identification, biochemical characterization, and potential applications of root endophytic bacteria and rhizosphere bacteria.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!