Background: Polyesters are applied in high-end products in many industrial applications, including resins and powder-coating applications. The characterization of the chemical heterogeneities within a polyester is of utmost interest to develop new products or improve existing applications. Unfortunately, characterization is a difficult task, as polyesters may feature distributions in end-group functionality, molecular weight, chemical composition, and degree of branching. Currently, no analytical method can characterize all these interdependent distributions in a single analysis.
Results: We report the use of comprehensive normal-phase liquid chromatography × size-exclusion chromatography hyphenated with ultraviolet-light spectroscopy and high-resolution mass spectrometry in parallel (NPLC × SEC-UV/HRMS) to characterize polyesters according to their end-group-functionality and molecular-weight distributions. The chemical composition can be measured with HRMS, while relative quantitation can be performed with UV detection. A supercharging agent was used during ionization allowing to extend the molecular-weight range of the detected chemical species.
Significance: The presented platform allows characterization of polyesters with varying fractions of carboxyl or hydroxyl end-group functionalities and varying distributions of molecular weight, degree of branching, and chemical compositions. The number-average and weight-average molar masses are obtained in the same analysis. This information cannot be obtained by any one-dimensional technique. The developed NPLC × SEC-UV/HRMS platform is a valuable tool for characterizing polyesters in an industrial setting.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2024.343086 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!