Zn@TA assisted dual cross-linked 3D printable glycol grafted chitosan hydrogels for robust antibiofilm and wound healing.

Carbohydr Polym

Department of Biosystems Engineering, Kangwon National University, Chuncheon-24341, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon-24341, Republic of Korea; Institute of Forest Science, Kangwon National University, Chuncheon-24341, Republic of Korea. Electronic address:

Published: November 2024

Rapid regeneration of the injured tissue or organs is necessary to achieve the usual functionalities of the damaged parts. However, bacterial infections delay the regeneration process, a severe challenge in the personalized healthcare sector. To overcome these challenges, 3D-printable multifunctional hydrogels of Zn/tannic acid-reinforced glycol functionalized chitosan for rapid wound healing were developed. Polyphenol strengthened intermolecular connections, while glutaraldehyde stabilized 3D-printed structures. The hydrogel exhibited enhanced viscoelasticity (G'; 1.96 × 10 Pa) and adhesiveness (210 kPa). The dual-crosslinked scaffolds showed remarkable antibacterial activity against Bacillus subtilis (∼81 %) and Escherichia coli (92.75 %). The hydrogels showed no adverse effects on human dermal fibroblasts (HDFs) and macrophages (RAW 264.7), indicating their superior biocompatibility. The Zn/TA-reinforced hydrogels accelerate M2 polarization of macrophages through the activation of anti-inflammatory transcription factors (Arg-1, VEGF, CD163, and IL-10), suggesting better immunomodulatory effects, which is favorable for rapid wound regeneration. Higher collagen deposition and rapid re-epithelialization occurred in scaffold-treated rat groups vis-à-vis controls, demonstrating superior wound healing. Taken together, the developed multifunctional hydrogels have great potential for rapidly regenerating bacteria-infected wounds in the personalized healthcare sector.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2024.122522DOI Listing

Publication Analysis

Top Keywords

wound healing
12
personalized healthcare
8
healthcare sector
8
multifunctional hydrogels
8
rapid wound
8
healing developed
8
hydrogels
5
zn@ta assisted
4
assisted dual
4
dual cross-linked
4

Similar Publications

Cisplatin, a platinum-based chemotherapeutic agent, can be used to treat cervical cancer (CC), but cisplatin resistance is increased during the cisplatin treatment. Long non-coding RNA PGM5-AS1 reportedly participates in CC tumorigenesis; however, its role in CC patients with cisplatin resistance has not been revealed. The present aimed to examine the role of PGM5-AS1 in modulating cisplatin resistance in CC.

View Article and Find Full Text PDF

Chronic complete spinal cord injury (SCI) is difficult to treat because of scar formation and cavitary lesions. While human iPS cell-derived neural stem/progenitor cell (hNS/PC) therapy shows promise, its efficacy is limited without the structural support needed to address cavitary lesions. Our study investigated a combined approach involving surgical scar resection, decellularized extracellular matrix (dECM) hydrogel as a scaffold, and hNS/PC transplantation.

View Article and Find Full Text PDF

To develop and validate a nomogram for predicting the risk of adverse events (intraoperative massive haemorrhage or retained products of conception) associated with the termination of Caesarean scar pregnancy (CSP). Data were retrospectively collected from patients diagnosed with CSP who underwent Dilation and Curettage (D&C) at two hospitals. This data was divided into internal and external cohorts for analysis.

View Article and Find Full Text PDF

Introduction: Continued interest in the optimization of recovery in aesthetics has led to the exploration of adjunctive therapies. Hyperbaric oxygen therapy (HBOT) serves as one such therapy that may have an impact in this field. HBOT is hypothesized to improve ischemia, reduce swelling, and minimize secondary hypoxic tissue damage.

View Article and Find Full Text PDF

To investigate CHD1L's impacts and molecular processes in hypoxic cutaneous squamous cell carcinoma. Monoclonal proliferation assays and CCK-8 were used to detect the proliferation capacity of A431 cells and Colon16 cells; wound healing experiments and Transwell assays were used to examine the migration and invasion capacity of A431 cells and Colon16 cells; angiogenesis experiments were conducted to assess the influence of A431 cells on angiogenesis; a nude mouse tumor xenograft experiment and HE staining were utilized to evaluate the impact of CHD1L on the progression of cutaneous squamous cell carcinoma; western blot analysis was performed to detect the expression of p-PI3K, p-AKT, and PD-L1 in A431 cells, as well as CD9, TSG101, PD-L1 in exosomes, and CD206, Arginase-1, iNOS, IL-1β, p-AKT, p-mTOR, VEGF, COX-2, MMP2, MMP9, p-ERK1/2 in tumor-associated macrophages. Under hypoxic conditions, CHD1L promoted the proliferation, migration, invasion, and angiogenesis of cutaneous squamous cell carcinoma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!