Breast cancer (BC), a prevalent and severe malignancy, detrimentally affects women globally. Its prognostic implications are profoundly influenced by gene expression patterns. This study retrieved 509 BCE-associated oncogenes and 1,012 neurotransmitter receptor-related genes from the GSEA and KEGG databases, intersecting to identify 98 relevant genes. Clinical and transcriptomic expression data related to BC were downloaded from the TCGA, and differential genes were identified based on an FDR value <0.05 & |log2FC| ≥ 0.585. Univariate analysis of these genes revealed that high expression of NSF and low expression of HRAS, KIF17, and RPS6KA1 are closely associated with BC survival prognosis. A prognostic model constructed for these four genes demonstrated significant prognostic relevance for BC-TCGA patients (P < 0.001). Subsequently, an immunofunctional analysis of the BC oncogene-neurotransmitter receptor-related gene cluster revealed the involvement of immune cells such as T cells CD8, T cells CD4 memory resting, and Macrophages M2. Further analysis indicated that immune functions were primarily concentrated in APC_co_inhibition, APC_co_stimulation, CCR, and Check-point, among others. Lastly, a prognostic nomogram model was established, and ROC curve analysis revealed that the nomogram is a vital indicator for assessing BC prognosis, with 1-year, 3-year, and 5-year survival rates of 0.981, 0.897, and 0.802, respectively. This model demonstrates high calibration, clinical utility, and predictive capability, promising to offer an effective preliminary tool for clinical diagnostics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.slast.2024.100183 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!