Revegetation is a promising strategy for large-scale bauxite residue disposal and management, potentially influencing the geochemical stability of potentially toxic elements (PTEs) through rhizosphere processes. However, the geochemical behaviors of PTEs and the underlying mechanisms during bauxite residue revegetation remain unclear. This study examined the migration and transformation behaviors of PTEs and their underlying mechanisms in the bauxite residue-vegetation-leachate system under various revegetation strategies, including single and co-planting of perennial ryegrass (Lolium perenne L.) and white clover (Trifolium repens L.), over a 100-day microcosm experiment. The results showed significant decreases in pH, EC, Na, Al, and Cr levels in the leachate under various revegetation strategies, with slight increases in Cu, V, As, and Pb. Over time, the pH, EC, Na, Cr, Cu, V, Pb, and As levels in the leachate decreased, while those of Al, Fe, Mn, and Zn increased. The mean pH, EC, and concentrations of Na, Al, Fe, and Cr in the leachate of the revegetated treatments decreased by 6%-8%, 21%-33%, 2%-4%, 19%-27%, 7%-22%, and 15%-26%, respectively, while the mean concentrations of Mn, V, Zn, and As increased by 47%-134%, 26%-46%, 39%-47%, and 3%-10%, respectively, compared to the unamended treatment. Co-planting generally exhibited a greater impact on leachate components compared to single planting. Available contents of Al, Cr, and Pb decreased by 81%-83%, 57%-77%, and 55%-72%, respectively, while those of other PTEs increased in the revegetated bauxite residue. Co-planting significantly reduced the availability of PTEs compared to single planting. Except for Na and Mn, the bioaccumulation and transportation factors of PTEs in both vegetation species remained below 1 under various revegetation strategies. The migration and transformation behaviors of PTEs in the bauxite residue-vegetation-leachate system were mainly influenced by pH and nutrient levels. These findings provide new insights into the migration and transformation behaviors of PTEs during bauxite residue revegetation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2024.124867 | DOI Listing |
Chemosphere
December 2024
College of Land Science and Technology, China Agricultural University, Beijing, 100193, PR China. Electronic address:
Heavy metals released from metallic sulfidic tailings pose significant environmental threats by contaminating surface and groundwater in mining areas. Sustainable rehabilitation methods are essential to remove or stabilize these metals, improving the quality of acid mine drainage and minimizing pollution. This study examines the adsorption capacity of zinc ions (Zn) by different iron-silicate mineral groups under natural weathering and bacteria-regulated weathered conditions.
View Article and Find Full Text PDFACS Omega
December 2024
Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds and Application, School of Chemistry and Environmental Science, Xiangnan University, Chenzhou 423000, China.
To immobilize the activity and bioavailability of soil Cd, the single treatment only flooding (F) and the combined treatments with flooding plus bauxite residue (F-B) or lime (F-L) were designed to investigate the impacts of different treatments on the toxicity and bioavailability of Cd in contaminated soil. Compared with the single treatment (F), the combined treatments (F-B and F-L) improved soil-associated organic functional groups and aggregated stability in soil. The average particle sizes of soil aggregates increased from 126 nm (F-treated soil) to 256 and 270 nm following F-B and F-L treatments, respectively.
View Article and Find Full Text PDFJ Hazard Mater
November 2024
Department of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea. Electronic address:
Bioresour Technol
November 2024
FPInnovations, 2665 East Mall, Vancouver, BC V6T 1Z4, Canada.
Biomass gasification as a renewable energy technology has been a widely explored research and development area. The efficient and economic removal of harmful components, particularly tars, in raw syngas from the biomass gasifier is still a major challenge. In this study, a novel two-stage fluidized bed pilot-scale gasifier has been developed to enhance the steam-oxygen biomass gasification to generate low-tar syngas; while, a prototype hot syngas cleanup system has been designed, built and tested to further reduce the tar content and purify the syngas from the biomass gasifier for downstream applications.
View Article and Find Full Text PDFSci Rep
November 2024
Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, 31621, Dhahran, Saudi Arabia.
This study aims to reach a sustainable solution for waste management of medical plastics through value-added product extraction. It uses the DOE technique to examine the effect of natural zeolite and synthetic AlO and SiO as catalysts. A small lab-scale pyrolysis setup was used for medical plastic waste management treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!