Alkaline range pH sensor based on chitosan hydrogel: A novel approach to pH sensing.

Int J Biol Macromol

Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin 34148-96818, Islamic Republic of Iran.

Published: November 2024

Monitoring of pH under extreme alkaline range is still a challenge due to the lack of accuracy and validity. This research developed a novel pH sensor (hydrogel/BTB) based on the transition of bromothymol blue from the hydrogel matrix into the pH-examining sample solution. The hydrogel/BTB sensor was synthesized through the solvent casting of chitosan, citric acid as the crosslinker, and bromothymol blue as a pH-sensitive dye. The structure of hydrogel/BTB was characterized using Fourier-transform infrared spectroscopy (FT-IR), Energy-dispersive X-ray spectroscopy (EDS), Field emission scanning electron microscopy (FE-SEM), Brunauer-Emmett-Teller (BET) analysis, and thermogravimetric analysis (TGA). The effect of various parameters on pH determination was investigated. The developed pH sensor demonstrated a linear detection range validated from pH 10 to 14 using the gravimetric method, and from pH 11 to 14 using the colorimetric method. The sensor successfully detected pH in alkaline tap water, carbonate buffer, and ethanol amine buffer. The transition of bromothymol blue is described by the Peppas-Korsmeyer kinetic model. The activation and Gibbs free energy were obtained as 357.1 J/mol and 260 J/mol, respectively. This work furnished a new mechanism for pH detection, and it has excellent potential for developing novel sensors in this field.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.135199DOI Listing

Publication Analysis

Top Keywords

bromothymol blue
12
alkaline range
8
transition bromothymol
8
sensor
5
range sensor
4
sensor based
4
based chitosan
4
chitosan hydrogel
4
hydrogel novel
4
novel approach
4

Similar Publications

Directed evolution of glutamate decarboxylase B for enhancing its enzyme activity towards nearly neutral pHs based on error-prone PCR.

Int J Biol Macromol

December 2024

College of Food Science and Biotechnology, Zhejiang Gongshang University, 149 Jiaogong Road, Hangzhou, Zhejiang Province 310035, People's Republic of China. Electronic address:

Glutamate decarboxylases (GADs) can catalyze the conversion of l-glutamate to γ-aminobutyric acid (GABA), while consuming one H. However, the GADs found so far are catalytically active in the pHs of 3.8-5.

View Article and Find Full Text PDF

Sunlight-driven photocatalytic degradation of industrial dyes using Withania somnifera decorated MnO nanoparticles.

Discov Nano

December 2024

Department of Chemistry, School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, 248007, India.

Article Synopsis
  • The study introduces a quick and eco-friendly method to create manganese oxide (MnO) nanoparticles using Ashwagandha extract, with noticeable color change signaling synthesis.
  • Various analytical techniques confirmed the formation and properties of the nanoparticles, which demonstrated high photocatalytic efficiency in breaking down pollutants when exposed to sunlight.
  • The process is simple, does not require harmful chemicals, and has potential applications in wastewater treatment, promoting the development of sustainable nanomaterials.
View Article and Find Full Text PDF

Next-generation methods for precise pH detection in ocular chemical burns: a review of recent analytical advancements.

Anal Methods

November 2024

Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China.

Ocular burns due to accidental chemical spillage pose an immediate threat, representing over 20% of emergency ocular traumas. Early detection of the ocular pH is imperative in managing ocular chemical burns. Alkaline chemical burns are more detrimental than acidic chemical burns.

View Article and Find Full Text PDF

Nowadays, there is a need to expand the bank of spectrophotometric methods for the determination of perindopril in dosage forms for the purposes of routine pharmaceutical analysis, which would be simple, express, «green» and inexpensive. In the present work, perindopril in tablets was quantified via a direct simple, «green», and non-extracting spectrophotometric approach based on the formation of ion-pair complexes with sulphophtalein dyes. The absorbances of the colored reaction products were registered at 405 nm (bromocresol green, BCG), 397 nm (bromocresol purple, BCP, and bromothymol blue, BTB) and 598 nm (bromophenol blue, BPB).

View Article and Find Full Text PDF

This study presents a novel dual-modal approach for glutathione (GSH) detection using blue and yellow dual-emission carbon dots (BY-CDs) and bromothymol blue (BTB) at pH 8.0. The method employs both colorimetric and fluorometric detection modes, offering a new perspective on GSH quantification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!