Elevated temperature as the dominant stressor on the harmful algal bloom-causing dinoflagellate Prorocentrum obtusidens in a future ocean scenario.

Sci Total Environ

State Key Laboratory of Marine Environmental Science/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China. Electronic address:

Published: November 2024

AI Article Synopsis

  • * A study revealed that rising temperatures (from 22°C to 26°C) significantly influenced the dinoflagellates, enhancing growth and photosynthetic efficiency but decreasing overall nutrient content.
  • * The research highlighted that elevated temperatures interact with other stressors, leading to heightened energy production and material synthesis, showcasing the complex effects of combined environmental changes on these organisms.

Article Abstract

Marine dinoflagellates are increasingly affected by ongoing global climate changes. While understanding of their physiological and molecular responses to individual stressors anticipated in the future ocean has improved, their responses to multiple concurrent stressors remain poorly understood. Here, we investigated the individual and combined effects of elevated temperature (26 °C relative to 22 °C), increased pCO (1000 μatm relative to 400 μatm), and high nitrogen: phosphorus ratio (180:1 relative to 40:1) on a harmful algal bloom-causing dinoflagellate Prorocentrum obtusidens under short-term (28 days) exposure. Elevated temperature was the most dominant stressor affecting P. obtusidens at physiological and transcriptomic levels. It significantly increased cell growth rate and maximum photosynthetic efficiency (Fv/Fm), but reduced chlorophyll a, particulate organic carbon, particulate organic nitrogen, and particulate organic phosphorus. Elevated temperature also interacted with other stressors to produce synergistic positive effects on cell growth and Fv/Fm. Transcriptomic analysis indicated that elevated temperature promoted energy production by enhancing glycolysis, tricarboxylic acid cycle, and nitrogen and carbon assimilation, which supported rapid cell growth but reduced material storage. Increased pCO enhanced the expression of genes involved in ionic acid-base regulation and oxidative stress resistance, whereas a high N:P ratio inhibited photosynthesis, compromising cell viability, although the effect was alleviated by elevated temperature. The combined effect of these multiple stressors resulted in increased energy metabolism and up-regulation of material-synthesis pathways compared to the effect caused by elevated temperature alone. Our results underscore ocean warming as the predominant stressor for dinoflagellates and highlight the complex, synergistic effects of multi-stressors on dinoflagellates.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.175946DOI Listing

Publication Analysis

Top Keywords

elevated temperature
28
cell growth
12
particulate organic
12
temperature dominant
8
dominant stressor
8
harmful algal
8
algal bloom-causing
8
bloom-causing dinoflagellate
8
dinoflagellate prorocentrum
8
prorocentrum obtusidens
8

Similar Publications

Context: DNAN/DNB cocrystals, as a newly developed type of energetic material, possess superior safety and thermal stability, making them a suitable alternative to traditional melt-cast explosives. Nonetheless, an exploration of the thermal degradation dynamics of the said cocrystal composite has heretofore remained uncharted. Consequently, we engaged the ReaxFF/lg force field modality to delve into the thermal dissociation processes of the DNAN/DNB cocrystal assembly across a spectrum of temperatures, encompassing 2500, 2750, 3000, 3250, and 3500 K.

View Article and Find Full Text PDF

Assessing Changes in Permethrin Toxicity to Juvenile Inland Silversides (Menidia beryllina) Under Different Temperature Scenarios.

Arch Environ Contam Toxicol

January 2025

Center for Fisheries, Aquaculture and Aquatic Sciences, School of Biological Sciences, Southern Illinois University, Carbondale, IL, 62901, USA.

Aquatic systems are impacted by temperature fluctuations which can alter the toxicity of pesticides. Increased temperatures related to climate change have elevated pest activity, resulting in an escalation of pesticide use. One such pesticide class, pyrethroids, has replaced the use of several banned pesticides due to its low mammalian toxicity.

View Article and Find Full Text PDF

Atypical Patients With Severe Fever With Thrombocytopenia Syndrome.

J Med Virol

January 2025

State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing, China.

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne disease with a high fatality rate. The clinical diagnosis criteria mainly rely on white blood cell (WBC) and platelet (PLT), which, however, are of limited usage in identifying atypical SFTS. A multicenter study was performed in two hospitals from 2011 to 2023.

View Article and Find Full Text PDF

Objective: The rising rates of cesarean delivery (CD), which are a leading cause of intra-abdominal adhesions, represent a major concern for maternal health. We aimed to describe early maternal complications following CD in women with severe intra-abdominal adhesions.

Methods: A prospective observational study was conducted at a university-affiliated tertiary medical center (January 2021 and March 2023) in Israel.

View Article and Find Full Text PDF

Sweet syndrome, also known as acute febrile neutrophilic dermatosis, is a rare condition characterised by fever, leucocytosis, and painful skin lesions. This retrospective study analysed 21 patients with Sweet syndrome treated at the Affiliated Hospital of Xuzhou Medical University from January 2015 to June 2022. The study aimed to investigate the aetiology, clinicopathological features, and treatment outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!