The unique distribution pattern of PFAS in landfill organics.

J Hazard Mater

Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND 58102, United States; Environmental and Conservation Sciences, North Dakota State University, Fargo, ND 58108, United States. Electronic address:

Published: November 2024

PFAS from degrading landfill waste partition into organic matter, leachate, and landfill gas. Driven by the limited understanding of PFAS distribution in landfill organics, we analyzed PFAS across various depths and seven spatially distinct locations within a municipal landfill. The measured PFAS concentrations in organics ranged from 6.71 to 73.06 µg kg, a sum of twenty-nine PFAS from six classes. Perfluorocarboxylic acids (PFCAs) and fluorotelomer carboxylic acids (FTCAs) were the dominant classes, constituting 25-82 % and 8-40 % of total PFAS at different depths. PFBA was the most dominant PFCA with a concentration range of 0.90-37.91 µg kg, while 5:3 FTCA was the most prevalent FTCA with a concentration of 0.26-17.99 µg kg. A clear vertical distribution of PFAS was observed, with significantly greater PFAS concentrations at the middle depths (20-35 ft), compared to the shallow (10-20 ft) and high depths (35-50 ft). A strong positive correlation (r > 0.50) was noted between total PFAS, total carbon, and dissolved organic matter in landfill organics. Multivariate statistical analysis inferred common sources and transformations of PFAS within the landfill. This study underscores the importance of a system-level analysis of PFAS fate in landfills, considering waste variability, chemical properties, release mechanisms, and PFAS transformations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11483333PMC
http://dx.doi.org/10.1016/j.jhazmat.2024.135678DOI Listing

Publication Analysis

Top Keywords

pfas
13
landfill organics
12
pfas landfill
8
organic matter
8
pfas depths
8
pfas concentrations
8
total pfas
8
landfill
7
unique distribution
4
distribution pattern
4

Similar Publications

Investigation of Transformation Pathways of Polyfluoroalkyl Substances during Chlorine Disinfection.

Environ Sci Technol

January 2025

Department of Civil and Environmental Engineering, University of Missouri, Columbia, Missouri 65211, United States.

Recent regulations on perfluorinated compounds in drinking water underscore the need for a deeper understanding of the formation of perfluorinated compounds from polyfluoroalkyl substances during chlorine disinfection. Among the compounds investigated in this study, N-(3-(dimethylaminopropan-1-yl)perfluoro-1-hexanesulfonamide (N-AP-FHxSA) underwent rapid transformation during chlorination. Within an hour, it produced quantitative yields of various poly- and per-fluorinated products, including perfluorohexanoic acid (PFHxA).

View Article and Find Full Text PDF

Traditional approaches for quantitatively characterizing uncertainty in risk assessment require adaptation to accommodate increased reliance on observational (vs. experimental) studies in developing toxicity values. Herein, a case study with PFOA and PFOS and vaccine response explores approaches for qualitative and-where possible-quantitative assessments of uncertainty at each step in the toxicity value development process when using observational data, including review and appraisal of individual studies, candidate study selection, dose-response modeling, and application of uncertainty factors.

View Article and Find Full Text PDF

Trifluoroacetic acid (TFA) is a ubiquitous environmental contaminant; however, its sources are poorly constrained. One understudied source is from the photochemical reactions of aromatic compounds containing -CF moieties (aryl-CF) including many pharmaceuticals and agrochemicals. Here, we studied the aqueous photochemistry of 4-(trifluoromethyl)phenol (4-TFMP), a known transformation product of the pharmaceutical fluoxetine.

View Article and Find Full Text PDF

Background: Exposure to per- and polyfluoroalkyl substances (PFAS) has been linked with various cancers. Assessment of PFAS in drinking water and cancers can help inform biomonitoring and prevention efforts.

Objective: To screen for incident cancer (2016-2021) and assess associations with PFAS contamination in drinking water in the US.

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFASs) are persistent environmental contaminants found in human tissues and persist in the environment, posing significant risks to reproductive health. This review examines the impact of PFAS exposure on male reproductive health, with a focus on sperm epigenetics. PFASs disrupt endocrine function by altering key reproductive hormones and impairing sperm motility, quality, and viability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!