Fluorescent probe for imaging NH in plants, food, and living cells and for quantitative detection of NH in soil and water using a smartphone.

J Hazard Mater

College of Food Science and Engineering, College of Chemistry and Materials Engineering, Institute of Ocean, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou 121013, PR China. Electronic address:

Published: November 2024

Hydrazine is volatile and highly toxic, causing severe harm to water, soil, air, and organisms. Therefore, real-time detection and long-term monitoring of hydrazine are crucial for environmental protection and human health. Herein, an "OFF-ON" fluorescent probe 5-((10-ethyl-2-methoxy-10 H-phenothiazin-3-yl)methylene)-2,2-dimethyl-1,3-dioxane-4,6-dione (MPD) for hydrazine detection through a nucleophilic addition reaction was developed. MPD could exclusively identify hydrazine through colorimetric and fluorescent dual-channel responses within 30 s, which also demonstrated high sensitivity (detection limit, 12 nM) and a wide pH range (6 -12). The sensing mechanism of MPD was confirmed using theoretical calculations, where fluorescence was emitted following the recognition of hydrazine because of the disappearance of the photoinduced electron transfer (PET) process. Using a smartphone, MPD enabled the quantitative detection of hydrazine in real water samples and sandy soil. Notably, in the process of detecting hydrazine in actual water samples, the establishment of analytical methods and the completion of rapid quantitative detection only required a smartphone and built-in apps. Additionally, we showed that MPD could recognize hydrazine in various environmental samples, including plants, food, hydrazine vapors, and cells. We believe that the fluorescent probe MPD developed in this study and the established smartphone visualization platform will provide a convenient and effective tool for detecting hydrazine in environmental monitoring, food safety assessment, biological system safety, and other fields.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2024.135701DOI Listing

Publication Analysis

Top Keywords

fluorescent probe
12
quantitative detection
12
hydrazine
10
plants food
8
water samples
8
detecting hydrazine
8
hydrazine environmental
8
detection
6
mpd
6
fluorescent
4

Similar Publications

Heterogeneity in Fluorescence-Stained Sperm Membrane Patterns and Their Dynamic Changes Towards Fertilization in Mice.

Front Biosci (Landmark Ed)

January 2025

Graduate School of Life and Environmental Sciences, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, 400-8510 Kofu, Japan.

Background: Sperm represent a heterogeneous population crucial for male reproductive success. Additionally, sperm undergo dynamic changes during maturation and capacitation. Despite these well-established processes, the complex nature of sperm heterogeneity and membrane dynamics remains elusive.

View Article and Find Full Text PDF

Background: In neuroscience, Ca imaging is a prevalent technique used to infer neuronal electrical activity, often relying on optical signals recorded at low sampling rates (3 to 30 Hz) across multiple neurons simultaneously. This study investigated whether increasing the sampling rate preserves critical information that may be missed at slower acquisition speeds.

Methods: Primary neuronal cultures were prepared from the cortex of newborn pups.

View Article and Find Full Text PDF

Benzo[1,2-b:6,5-b']dithiophene-4,5-diamine: A New Fluorescent Probe for the High-Sensitivity and Real-Time Visual Monitoring of Phosgene.

Sensors (Basel)

January 2025

State Key Laboratory of Marine Resource Utilization in South China Sea, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.

The detection of highly toxic chemicals such as phosgene is crucial for addressing the severe threats to human health and public safety posed by terrorist attacks and industrial mishaps. However, timely and precise monitoring of phosgene at a low cost remains a significant challenge. This work is the first to report a novel fluorescent system based on the Intramolecular Charge Transfer (ICT) effect, which can rapidly detect phosgene in both solution and gas phases with high sensitivity by integrating a benzo[1,2-b:6,5-b']dithiophene-4,5-diamine (BDTA) probe.

View Article and Find Full Text PDF

In a search for dyes photoactivatable with visible light, fluorenes with substituents at positions 2 and 7 were prepared, and their absorption and emission spectra were studied. In particular, the synthesis route to 9-diazofluorenes with 2-(N,N-dialkylamino) and N-modified 7-(4-pyridyl) substituents was established. These compounds are initially non-fluorescent, undergo photolysis with UV or blue light, and-in non-polar media-provide orange- to red-emitting products with a large separation between absorption and emission bands.

View Article and Find Full Text PDF

In recent years, the near-infrared (NIR) fluorescence theranostic system has garnered increasing attention for its advantages in the simultaneous diagnosis- and imaging-guided delivery of therapeutic drugs. However, challenges such as strong background fluorescence signals and rapid metabolism have hindered the achievement of sufficient contrast between tumors and surrounding tissues, limiting the system's applicability. This study aims to integrate the pegylation strategy with a tumor microenvironment-responsive approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!