Glufosinate-ammonium increased nitrogen and phosphorus content in water and shaped microbial community in epiphytic biofilm of Hydrilla verticillata.

J Hazard Mater

Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.

Published: November 2024

Glufosinate-ammonium (GLAM) can be released into adjacent water bodies with rainfall runoff and return water from farmland irrigation. However, impacts of GLAM on aquatic organisms remain unclear. In this study, changes in water quality, plant physiological parameters and epiphytic microbial community were investigated in wetlands with Hydrilla verticillata exposed to GLAM for 24 days. We found GLAM addition damaged cell and reduced chlorophyll a content in Hydrilla verticillata leaves, and increased ammonium and phosphorus in water (p < 0.001). The α-diversity increased in bacterial community but decreased in eukaryotic community with GLAM exposure. Neutral community models explained 62.3 % and 55.0 % of the variance in bacterial and eukaryotic communities, respectively. Many GLAM micro-biomarkers were obtained, including some clades from Proteobacteria, Bacteroidete, Actinobacteriota, Phragmoplastophyta, Annelida and Arthropoda. Redundancy analysis revealed that GLAM concentration was positively correlated to Flavobacterium, Gomphonema and Closterium but negatively to Methyloglobulus and Methylocystis. Network analysis revealed that 15 mg/L GLAM disturbed the interactions among phytoplankton, protozoa, metazoan and bacteria and reduced the stability of the microbial communities compared to 8 mg/L GLAM. GLAM shaped the nitrogen and phosphorus cycle related bacterial genes. This study highlights that herbicides are non-neglectable factors affecting the efficiency of aquatic ecological restoration in agricultural areas to control agricultural non-point source pollution.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2024.135674DOI Listing

Publication Analysis

Top Keywords

hydrilla verticillata
12
microbial community
8
water
5
glufosinate-ammonium increased
4
increased nitrogen
4
nitrogen phosphorus
4
phosphorus content
4
content water
4
water shaped
4
shaped microbial
4

Similar Publications

Removal and ecological impact of sulfamethoxazole and N-acetyl sulfamethoxazole in mesocosmic wetlands dominated by submerged plants: Plant tolerance, microbial response, and nitrogen transformation.

Sci Total Environ

December 2024

Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.

Sulfamethoxazole (SMX) and its human metabolite N-acetylsulfamethoxazole (N-SMX) are frequently detected in aquatic environments, posing potential threats to freshwater ecosystem health. Constructed wetlands are pivotal for wastewater treatment, with plant species serving as key determinants of pollutant removal efficiency. In this study, wetlands dominated by three submerged plants (Myriophyllum verticillatum, Vallisneria spiralis, Hydrilla verticillata) were respectively constructed to investigate the removal of SMX and N-SMX, and the impact on wetland ecology regarding plant tolerance, microbial response, and nitrogen transformation.

View Article and Find Full Text PDF

Harvesting is a direct and simple artificial method to regulate submerged macrophyte communities. However, there is still a gap in whether the succession of different seasonal submerged macrophytes can be achieved by harvesting. The morphological, physiological index, competition intensity of Hydrilla verticillata (H.

View Article and Find Full Text PDF

The fate and effects of sodium dodecyl benzene sulfonate (SDBS) in sewage treatment plants effluents on nutrients and submerged macrophytes are far from clear in wetlands. This study conducted a 24-day experiment to investigate changes in nutrients and epiphytic biofilm of Hydrilla verticillata in wetlands receiving effluents with 0.5, 2 and 5 mg L SDBS.

View Article and Find Full Text PDF

The state transition theory suggests that the decline of submerged macrophytes in shallow lakes is closely associated with reduced stoichiometric homeostasis, particularly phosphorus homeostasis (H). The degradation typically progresses from deeper to shallower regions, indicating a potential positive correlation between the deepwater adaptability (DA) and H values of submerged macrophytes. Here, we investigated the distribution pattern of submerged macrophytes across different water depths of Erhai Lake to test this hypothesis.

View Article and Find Full Text PDF

Glufosinate-ammonium increased nitrogen and phosphorus content in water and shaped microbial community in epiphytic biofilm of Hydrilla verticillata.

J Hazard Mater

November 2024

Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.

Glufosinate-ammonium (GLAM) can be released into adjacent water bodies with rainfall runoff and return water from farmland irrigation. However, impacts of GLAM on aquatic organisms remain unclear. In this study, changes in water quality, plant physiological parameters and epiphytic microbial community were investigated in wetlands with Hydrilla verticillata exposed to GLAM for 24 days.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!