Glufosinate-ammonium (GLAM) can be released into adjacent water bodies with rainfall runoff and return water from farmland irrigation. However, impacts of GLAM on aquatic organisms remain unclear. In this study, changes in water quality, plant physiological parameters and epiphytic microbial community were investigated in wetlands with Hydrilla verticillata exposed to GLAM for 24 days. We found GLAM addition damaged cell and reduced chlorophyll a content in Hydrilla verticillata leaves, and increased ammonium and phosphorus in water (p < 0.001). The α-diversity increased in bacterial community but decreased in eukaryotic community with GLAM exposure. Neutral community models explained 62.3 % and 55.0 % of the variance in bacterial and eukaryotic communities, respectively. Many GLAM micro-biomarkers were obtained, including some clades from Proteobacteria, Bacteroidete, Actinobacteriota, Phragmoplastophyta, Annelida and Arthropoda. Redundancy analysis revealed that GLAM concentration was positively correlated to Flavobacterium, Gomphonema and Closterium but negatively to Methyloglobulus and Methylocystis. Network analysis revealed that 15 mg/L GLAM disturbed the interactions among phytoplankton, protozoa, metazoan and bacteria and reduced the stability of the microbial communities compared to 8 mg/L GLAM. GLAM shaped the nitrogen and phosphorus cycle related bacterial genes. This study highlights that herbicides are non-neglectable factors affecting the efficiency of aquatic ecological restoration in agricultural areas to control agricultural non-point source pollution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2024.135674 | DOI Listing |
Sci Total Environ
December 2024
Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
Sulfamethoxazole (SMX) and its human metabolite N-acetylsulfamethoxazole (N-SMX) are frequently detected in aquatic environments, posing potential threats to freshwater ecosystem health. Constructed wetlands are pivotal for wastewater treatment, with plant species serving as key determinants of pollutant removal efficiency. In this study, wetlands dominated by three submerged plants (Myriophyllum verticillatum, Vallisneria spiralis, Hydrilla verticillata) were respectively constructed to investigate the removal of SMX and N-SMX, and the impact on wetland ecology regarding plant tolerance, microbial response, and nitrogen transformation.
View Article and Find Full Text PDFSci Rep
November 2024
College of Urban and Environmental Sciences, Hubei Normal University, Huangshi, 435002, China.
Harvesting is a direct and simple artificial method to regulate submerged macrophyte communities. However, there is still a gap in whether the succession of different seasonal submerged macrophytes can be achieved by harvesting. The morphological, physiological index, competition intensity of Hydrilla verticillata (H.
View Article and Find Full Text PDFBioresour Technol
January 2025
Chinese Academy of Environmental Planning, Beijing 100041, China. Electronic address:
The fate and effects of sodium dodecyl benzene sulfonate (SDBS) in sewage treatment plants effluents on nutrients and submerged macrophytes are far from clear in wetlands. This study conducted a 24-day experiment to investigate changes in nutrients and epiphytic biofilm of Hydrilla verticillata in wetlands receiving effluents with 0.5, 2 and 5 mg L SDBS.
View Article and Find Full Text PDFWater Res
December 2024
Department of Ecoscience, Aarhus University, Aarhus 8000, Denmark.
The state transition theory suggests that the decline of submerged macrophytes in shallow lakes is closely associated with reduced stoichiometric homeostasis, particularly phosphorus homeostasis (H). The degradation typically progresses from deeper to shallower regions, indicating a potential positive correlation between the deepwater adaptability (DA) and H values of submerged macrophytes. Here, we investigated the distribution pattern of submerged macrophytes across different water depths of Erhai Lake to test this hypothesis.
View Article and Find Full Text PDFJ Hazard Mater
November 2024
Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
Glufosinate-ammonium (GLAM) can be released into adjacent water bodies with rainfall runoff and return water from farmland irrigation. However, impacts of GLAM on aquatic organisms remain unclear. In this study, changes in water quality, plant physiological parameters and epiphytic microbial community were investigated in wetlands with Hydrilla verticillata exposed to GLAM for 24 days.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!