Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Introduction: The a-Synuclein Origin and Connectome (SOC) model of Lewy body diseases postulates that a-syuclein will be asymmetrically distributed in some patients with Lewy body diseases, potentially leading to asymmetric neuronal dysfunction and symptoms.
Methods: We included two patient groups: 19 non-demented Parkinson's disease (nPD) patients with [F]FDG PET and motor symptoms assessed by UPDRS-III, and 65 Lewy body dementia (LBD) patients with [F]FDG PET and dopamine radioisotope imaging. Asymmetry indices were calculated for [F]FDG PET by including the cortex for each hemisphere, for dopamine radioisotope imaging by including the putamen and caudate separately, and for motor symptoms by using the difference between right-left UPDRS-III score. Correlations between these asymmetry indices were explored to test the predictions of the SOC model. To identify cases with a more typical LBD imaging profile, we calculated a Cingulate Island Sign (CIS) index on the [F]FDG PET image.
Results: We found a significant correlation between cortical interhemispheric [F]FDG asymmetry and motor-symptom asymmetry in nPD patients (r = 0.62, P = 0.004). In patients with LBD, we found a significant correlation between cortical interhemispheric [F]FDG asymmetry and dopamine transporter asymmetry in the caudate (r = 0.37, P = 0.0019), but not in the putamen (r = 0.15, P = 0.22). We observed that the correlation in the caudate was stronger in LBD subjects with the highest CIS index, i.e., with more typical LBD imaging profiles.
Conclusion: Our study partly supports the SOC model, but further investigations are needed - ideally of de novo, non-demented PD patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.parkreldis.2024.107117 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!