Herein, an interpenetrating network hydrogel (IPN-Gel) based on cellulose and chitosan was synthesized via simultaneous amino-anhydride and azide-alkyne click reaction in water in one pot. The samples were characterized by various analytical methods including FTIR, SEM, XRD, XPS, H NMR and so forth. The fabrication conditions were optimized by single factor experiments with water uptake (WU) and gel mass fraction (GMF) as two indexes. The WU and GMF of the IPN-Gel prepared under optimized conditions were 1192.37 % and 74.00 %, respectively. Its WU descended with the ascension in temperature, and first descended and then gradually ascended with the ascension in pH, confirming that the IPN-Gel had thermal/pH dual responsiveness. Using 5-Fu as a model drug, the release behavior of 5-Fu in IPN-Gel was explored. Its release behavior could be regulated by changing temperature and pH values, and it followed the Korsmeyer Peppas model. The viability of 4 T1 cells and HUVEC cells exceeded 80 % after 48 h of incubation at a high concentration of 200 μg/mL IPN-Gel, and hemolytic percentage was below the allowed limit of 5 %. The study provides a new strategy for the preparation of the IPN-Gel with biocompatibility, swelling reversibility and controllable drug release.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2024.08.208 | DOI Listing |
Int J Biol Macromol
January 2025
School of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China. Electronic address:
Flexible smart sensing materials are gaining tremendous momentum in wearable and bionic smart electronics. To satisfy the growing demand for sustainability and eco-friendliness, biomass-based hydrogel sensors for green and biologically safe wearable sensors have attracted significant attention. In this work, we have prepared MCC/PAA/AgNWs/CNTs hydrogel sensors with excellent conductive sensing properties by a simple physical blending method.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Research Division for Sustainable Papermaking & Advanced Materials, Key Laboratory of Biobased Materials Science and Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, China. Electronic address:
In this paper, cellulose-lignin films containing Fe were prepared by the codissolution-precipitation method, and the films have high transparency as well as high UV absorption. In this process, kraft lignin chelates with Fe and then bonds with cellulose through hydrogen bonding, evenly distributing within the film. The morphological results showed that the kraft lignin chelated with Fe bound tightly linked to cellulose within the Fe@cellulose-lignin composite films.
View Article and Find Full Text PDFFEBS J
January 2025
Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, India.
Cellulases are an ensemble of enzymes that hydrolyze cellulose chains into fermentable glucose and hence are widely used in bioethanol production. The last enzyme of the cellulose degradation pathway, β-glucosidase, is inhibited by its product, glucose. The product inhibition by glucose hinders cellulose hydrolysis limiting the saccharification during bioethanol production.
View Article and Find Full Text PDFIn vitro and in vivo effects of mesoporous silica nanoparticles (MSN) on the functional activity of platelets were studied in experiments on white rats. MSN particles, neither uncoated nor coated with calcium alginate, induced spontaneous platelet aggregation when added to platelet-rich plasma, but significantly enhanced ADP-induced platelet aggregation. Subcutaneous administration of uncoated and calcium alginate-coated MSN resulted in increased maximum size and rate of platelet aggregate formation 1 day post-injection.
View Article and Find Full Text PDFSci Rep
January 2025
Food Toxicology and Contaminants Department, National Research Centre, Dokki, Cairo, 12622, Egypt.
Food commodities, including mycotoxins naturally produced from toxigenic fungi (pre- or post-harvest), are particularly vulnerable to contamination. The study intended to use unique bioactive composites loaded with antimicrobial constituents for food packaging. Three composite types are based on carboxymethyl cellulose/shellac (CMC/SH) and loaded with pomegranate extract (POE) with or without jojoba oil (JOE) at various concentrations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!