AI Article Synopsis

  • Sepsis is a serious condition where the body's response to infection causes organ dysfunction, and hemoperfusion is being used to filter out harmful inflammatory cytokines from the blood.
  • In a case study, a 69-year-old man with diabetes developed Multiple Organ Dysfunction Syndrome suspected to be due to septic shock, requiring intensive treatment including broad-spectrum antibiotics and hemoperfusion.
  • The treatment showed that hemoperfusion significantly reduced the levels of the antibiotic imipenem in the bloodstream, highlighting the need for additional doses before the procedure to ensure effective antibiotic therapy.

Article Abstract

Background: Sepsis is a life-threatening organ dysfunction caused by an excessive host response to infection, manifested by elevated levels of inflammatory cytokines. At present, the use of hemoperfusion to remove inflammatory cytokines from the bloodstream has been expanding. Meanwhile, the pharmacokinetics and pharmacodynamics characteristics of antibiotics in critically ill patients may be impacted by hemoperfusion.

Case Presentation: The patient was a 69-year-old male with poorly controlled type 2 diabetes. When admitted to the ICU, Multiple Organ Dysfunction Syndrome (MODS) appeared within 48 h, and he was suspected of septic shock due to acute granulocytopenia and significantly increased procalcitonin. Broad-spectrum antibiotics imipenem was administered according to Sepsis 3.0 bundle and hemoperfusion lasting 4 h with a neutron-macroporous resin device (HA-380, Jafron, China) five times was conducted to lower the extremely high value of serum inflammatory factors. Blood samples were collected to measure imipenem plasma concentration to investigate the effect of hemoperfusion quantitatively. This study showed that 4 h of hemoperfusion had a good adsorption ability on inflammatory factors and could remove about 75.2% of imipenem.

Conclusions: This case demonstrated the high adsorption capacity of hemoperfusion on imipenem in critically ill patients. It implies a timely imipenem supplement is required, especially before hemoperfusion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11366162PMC
http://dx.doi.org/10.1186/s12879-024-09774-3DOI Listing

Publication Analysis

Top Keywords

critically ill
12
ill patients
12
high adsorption
8
adsorption capacity
8
capacity hemoperfusion
8
hemoperfusion imipenem
8
imipenem critically
8
septic shock
8
organ dysfunction
8
inflammatory cytokines
8

Similar Publications

Multifaceted Immunomodulatory Nanocomplexes Target Neutrophilic-ROS Inflammation in Acute Lung Injury.

Adv Sci (Weinh)

December 2024

Department of Critical Care Medicine and Emergency, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China.

The sepsis-induced acute lung injury (ALI) still represents one of the leading causes of death in critically ill patients, underscoring the need for novel therapies. Excessive activation of immune cells and damage of reactive oxygen species (ROS) are the main factors that exacerbate lung injury. Here, the multifaceted immunomodulatory nanocomplexes targeting the proinflammatory neutrophilic activation and ROS damage are established.

View Article and Find Full Text PDF

Background And Objectives: is a common pathogen associated with healthcare-related infections. It is particularly notable for its ability to develop resistance to multiple antibiotics, making treatment challenging. During the COVID-19 pandemic, increased antibiotic use to manage critically ill patients was contributed to the rise of multidrug-resistant .

View Article and Find Full Text PDF

Hyperthyroidism is a common endocrine disease caused by the production of thyroid hormones in excessive amounts. Propylthiouracil (PTU) is one of the anti-thyroid drugs (ATD) used in the treatment of hyperthyroidism. Rectal PTU should be considered by physicians as a valuable option for managing hyperthyroidism as an alternative route of administration for patients who cannot tolerate oral medications.

View Article and Find Full Text PDF

Ischemia-reperfusion injuries (IRI) across various organs and tissues, along with sepsis, significantly contribute to the progression of critical illnesses. These conditions disrupt the balance of inflammatory mediators and signaling pathways, resulting in impaired physiological functions in human tissues and organs. Ferroptosis, a distinct form of programmed cell death, plays a pivotal role in regulating tissue damage and modulating inflammatory responses, thereby influencing the onset and progression of severe illnesses.

View Article and Find Full Text PDF

Background: Previous studies have demonstrated that the Naples Prognostic Score (NPS) provides strategic direction in the prognosis of malignant illness. Nevertheless, its relationship with chronic obstructive pulmonary disease (COPD) remains underexplored. Therefore, additional research specifically focusing on the relationship between the Naples Prognostic Score and COPD is necessary to determine its widespread applicability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!