AI Article Synopsis

  • Suspensions with microencapsulated phase change materials (MPCMs) are important in thermal energy storage systems used in buildings, textiles, and cooling technologies.
  • The study employs Gaussian process regression (GPR) to predict the dynamic viscosity of these suspensions, optimizing twelve hyperparameters using genetic algorithm, particle swarm optimization, and marine predators algorithm.
  • By focusing on the most significant hyperparameters, the best GPR model achieved an impressive R-value of 0.999224, indicating high accuracy and potential cost savings for related applications.

Article Abstract

Suspensions containing microencapsulated phase change materials (MPCMs) play a crucial role in thermal energy storage (TES) systems and have applications in building materials, textiles, and cooling systems. This study focuses on accurately predicting the dynamic viscosity, a critical thermophysical property, of suspensions containing MPCMs and MXene particles using Gaussian process regression (GPR). Twelve hyperparameters (HPs) of GPR are analyzed separately and classified into three groups based on their importance. Three metaheuristic algorithms, namely genetic algorithm (GA), particle swarm optimization (PSO), and marine predators algorithm (MPA), are employed to optimize HPs. Optimizing the four most significant hyperparameters (covariance function, basis function, standardization, and sigma) within the first group using any of the three metaheuristic algorithms resulted in excellent outcomes. All algorithms achieved a reasonable R-value (0.9983), demonstrating their effectiveness in this context. The second group explored the impact of including additional, moderate-significant HPs, such as the fit method, predict method and optimizer. While the resulting models showed some improvement over the first group, the PSO-based model within this group exhibited the most noteworthy enhancement, achieving a higher R-value (0.99834). Finally, the third group was analyzed to examine the potential interactions between all twelve HPs. This comprehensive approach, employing the GA, yielded an optimized GPR model with the highest level of target compliance, reflected by an impressive R-value of 0.999224. The developed models are a cost-effective and efficient solution to reduce laboratory costs for various systems, from TES to thermal management.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11366012PMC
http://dx.doi.org/10.1038/s41598-024-71027-9DOI Listing

Publication Analysis

Top Keywords

three metaheuristic
12
metaheuristic algorithms
12
gaussian process
8
process regression
8
regression gpr
8
suspensions microencapsulated
8
group
5
optimizing gaussian
4
gpr
4
gpr hyperparameters
4

Similar Publications

Accurate classification of logos is a challenging task in image recognition due to variations in logo size, orientation, and background complexity. Deep learning models, such as VGG16, have demonstrated promising results in handling such tasks. However, their performance is highly dependent on optimal hyperparameter settings, whose fine-tuning is both labor-intensive and time-consuming.

View Article and Find Full Text PDF

Background: Automatic classification of arrhythmias based on electrocardiography (ECG) data faces several significant challenges, particularly due to the substantial volume of clinical data involved in ECG signal analysis. The volume of clinical data has increased considerably, especially with the emergence of new clinical symptoms and signs in various arrhythmia conditions. These symptoms and signs, which serve as distinguishing features, can number in the tens of thousands.

View Article and Find Full Text PDF

Chimp optimization algorithm (CHOA) is a recently developed nature-inspired technique that mimics the swarm intelligence of chimpanzee colonies. However, the original CHOA suffers from slow convergence and a tendency to reach local optima when dealing with multidimensional problems. To address these limitations, we propose TASR-CHOA, a twofold adaptive stochastic reinforced variant.

View Article and Find Full Text PDF

Optimal power scheduling in real-time distribution systems using crow search algorithm for enhanced microgrid performance.

Sci Rep

December 2024

Department of Theoretical Electrical Engineering and Diagnostics of Electrical Equipment, Institute of Electrodynamics, National Academy of Sciences of Ukraine, Beresteyskiy, 56, Kyiv-57, 03680, Ukraine.

Microgrids (MGs) have gained significant attention over the past two decades due to their advantages in service reliability, easy integration of renewable energy sources, high efficiency, and enhanced power quality. In India, low-voltage side customers face significant challenges in terms of power supply continuity and voltage regulation. This paper presents a novel approach for optimal power scheduling in a microgrid, aiming to provide uninterrupted power supply with improved voltage regulation (VR).

View Article and Find Full Text PDF

Music genres classification has long been a challenging task in the field of Music Information Retrieval (MIR) due to the intricate and diverse nature of musical content. Traditional methods have struggled to accurately capture the complex patterns that differentiate one genre from another. However, recent advancements in deep learning have presented new opportunities to tackle this challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!