Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Probiotics are active microorganisms that are beneficial to the health of the host. However, probiotics are highly sensitive to the external environment, and are susceptible to a variety of factors that reduce their activity during production, storage, and use. Microencapsulation is an effective method that enhances probiotic activity. Macromolecules like polysaccharides, who classified as biologically active prebiotics, have attracted significant attention for their utility in probiotic microencapsulation. This article summarized the types of commonly used microencapsulation materials and their structural characteristics from the perspective of polysaccharides prebiotics. It also discussed recent advancements, probiotic-prebiotic microcapsule-based modulation of the immune system, as well as the associated limitations. Furthermore, the advantages and disadvantages of eight prebiotics as microencapsulation wall materials. The honeycomb structure of β-glucan enhances the bioavailability of probiotics, while, fructooligosaccharide and galactooligosaccharides improve microbead structure to tightly encapsulate probiotics. The terminal reducing groups of isomaltooligosaccharides and the free hydroxyl groups in xylooligosaccharides also positively affect the structure of microcapsules. Prebiotics not only enhance the survival rate and biological activity of probiotics as embedding materials during storage, but also exert their own probiotic effects. Collectively, prebiotics holds great promise as microencapsulation materials for probiotics delivery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.134468 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!