Objective: The objective of this study was to investigate the subharmonic response of Lumason (also known as SonoVue; Bracco, Milan, Italy) to static and dynamic ambient pressures, with a direct comparison to Sonazoid (GE HealthCare, Oslo, Norway) and Definity (Lantheus Medical Imaging, MA, USA). The subharmonic responses of contrast agents can be exploited to perform subharmonic-aided pressure estimation.
Methods: The subharmonic response of each ultrasound contrast agent was evaluated in both a static and dynamic tank using a commercially available Logiq E10 clinical ultrasound scanner (GE HealthCare) equipped with subharmonic imaging (SHI) and an acoustic power-optimization algorithm. A C1-6 curvilinear array that transmits at 2.5 MHz and receives at 1.25 MHz in SHI mode was used to acquire the subharmonic signals. Data was transferred offline into MATLAB (MathWorks) to perform linear regression analysis and statistical testing for significance of the slopes (i.e., agent sensitivity).
Results: Sonazoid and Definity showed an inverse linear dependency between subharmonic signal and hydrostatic pressure at all pressure ranges (static and dynamic) tested, with maximum sensitivity under 50 mmHg in the static tank (-0.190 and -0.194 dB/mmHg for Sonazoid and Definity, respectively). Lumason exhibited a tri-phasic subharmonic behavior, beginning with a linear trend from 0 to 90 mmHg (sensitivity = 0.069 dB/mmHg), followed by a plateau from 100 to 130 mmHg, and an inverse linear trend from 140 to 200 mmHg (sensitivity = -0.137 dB/mmHg).
Conclusion: The subharmonic response of Lumason is tri-phasic and differs from Sonazoid and Definity. Further investigation is needed to solidify understanding of the subharmonic behavior of Lumason to identify its usefulness for subharmonic-aided pressure estimation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11416899 | PMC |
http://dx.doi.org/10.1016/j.ultrasmedbio.2024.07.015 | DOI Listing |
Ultrasonics
December 2024
Department of Biomedical Engineering, School of Life Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China; Postdoctoral Workstation of Chongqing General Hospital, Chongqing, People's Republic of China. Electronic address:
Submicron ultrasound contrast agents hold great potential to extend the bubble-mediated theranostics beyond the vasculature, but their acoustic response and the interaction effects between them remain poorly understood. This study set out to numerically examine the interaction effects on the subharmonic oscillations of nanobubbles and the resultant acoustic emissions under subharmonic resonance conditions. Results showed that a negative correlation between bubble size and subharmonic resonance frequency is readily obtained from the radius response curves.
View Article and Find Full Text PDFUltrasound Med Biol
February 2025
Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, USA. Electronic address:
Sci Rep
October 2024
Institute for Mechanical Systems, ETH Zürich, Leonhardstrasse 21, 8092, Zürich, Switzerland.
Complex behavior in nonlinear dynamical systems often arises from resonances, which enable intricate energy transfer mechanisms among modes that otherwise would not interact. Theoretical, numerical and experimental methods are available to study such behavior when the resonance arises among modes of the linearized system. Much less understood are, however, resonances arising from nonlinear modal interactions, which cannot be detected from a classical linear analysis.
View Article and Find Full Text PDFNat Commun
October 2024
Center for Quantum Information, IIIS, Tsinghua University, Beijing, 100084, China.
Ultrasound Med Biol
November 2024
Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA. Electronic address:
Objective: The objective of this study was to investigate the subharmonic response of Lumason (also known as SonoVue; Bracco, Milan, Italy) to static and dynamic ambient pressures, with a direct comparison to Sonazoid (GE HealthCare, Oslo, Norway) and Definity (Lantheus Medical Imaging, MA, USA). The subharmonic responses of contrast agents can be exploited to perform subharmonic-aided pressure estimation.
Methods: The subharmonic response of each ultrasound contrast agent was evaluated in both a static and dynamic tank using a commercially available Logiq E10 clinical ultrasound scanner (GE HealthCare) equipped with subharmonic imaging (SHI) and an acoustic power-optimization algorithm.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!