Biogenic volatile organic compounds (BVOCs) significantly impact atmospheric chemistry, with emissions potentially influenced by nitrogen (N) deposition. The response of BVOC emissions to increasing N deposition remains debated. In this study, we examined Eucalyptus urophylla (E. urophylla) using three N treatments: N0, N50, and N100 (0, 50, and 100 kg N hm yr N addition). These treatments were applied to mature E. urophylla trees in a plantation subjected to over 10 years of soil N addition in southern China, a region with severe N deposition. Seventeen BVOCs were measured, with isoprene (36.99 %), α-pinene (38.80 %), and d-limonene (14.27 %) being the predominant compounds under natural conditions. Total BVOC emissions under N50 were nearly double those under N0 and N100, with leaf net CO assimilation identified as the most critical photosynthetic parameter. Isoprene and α-pinene emissions significantly increased under N50 compared to N0, while d-limonene emission decreased under N100. Stronger correlations for individual BVOCs under N50 and N100 compared to N0 might be due to differences in BVOC biosynthetic pathways and storage structures. The localized canopy-scale emission factors (EFs) under N50 were significantly higher than the default values in the Model of Emissions of Gases and Aerosols from Nature (MEGAN), suggesting the model might underestimate BVOC emissions from Eucalyptus in southern China under increased N deposition. Additionally, the secondary pollutant formation potentials of BVOCs were evaluated, identifying isoprene and monoterpenes as primary precursors of ozone and secondary organic aerosols. This study provides insights into the impacts of increased N deposition on BVOC emissions and their contribution to secondary atmospheric pollution. Updating localized BVOC EFs for subtropical tree species in southern China is crucial to reduce uncertainties in BVOC estimations under current and future N deposition scenarios.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.175887 | DOI Listing |
Front Plant Sci
December 2024
Biogeochemical Processes Department, Max Planck Institute for Biogeochemistry, Jena, Germany.
The Amazon forest is the largest source of isoprene emissions, and the seasonal pattern of leaf-out phenology in this forest has been indicated as an important driver of seasonal variation in emissions. Still, it is unclear how emissions vary between different leaf phenological types in this forest. To evaluate the influence of leaf phenological type over isoprene emissions, we measured leaf-level isoprene emission capacity and leaf functional traits for 175 trees from 124 species of angiosperms distributed among brevideciduous and evergreen trees in a central Amazon forest.
View Article and Find Full Text PDFMetabolites
December 2024
CNRS, Aix-Marseille University, Avignon University, IRD, UMR 7263 IMBE, 13397 Marseille, France.
Background/objectives: Biogenic volatile organic compounds (BVOCs), extensively studied in terrestrial plants with global emissions around 1 PgC yr, are also produced by marine organisms. However, benthic species, especially seagrasses, are understudied despite their global distribution (177,000-600,000 km). This study aims to examine BVOC emissions from key Mediterranean seagrass species (, , , and ) in marine and coastal lagoon environments.
View Article and Find Full Text PDFEnviron Pollut
December 2024
National Astronomical Research Institute of Thailand (Public Organization), Chiang Mai, Thailand. Electronic address:
Volatile organic compounds (VOCs) notably influence air quality, climate and secondary pollutant formation, particularly regions in where urban emissions interact with natural biogenic sources at the interface of urban and natural ecosystems. This study examined the VOC profiles in the Sakaerat dry evergreen forest and the urban area of Nakhon Ratchasima, Thailand, throughout 2023, focusing on seasonal and spatial variations in biogenic and anthropogenic VOCs (BVOCs and AVOCs, respectively). Hydrocarbons, mainly alkanes, dominated VOC compositions, contributing 43.
View Article and Find Full Text PDFEnviron Pollut
December 2024
Center for Development Research (ZEF), University of Bonn, Genscherallee 3, 53113 Bonn, Germany.
Urban green infrastructure (GI) plays a crucial role in improving air quality by removing pollutants and reducing emissions from structures. However, in Ethiopia, inadequate GI planning, largely due to limited awareness among planners and policymakers, can undermine the benefits of GI and worsen urban air quality issues. In this study, we demonstrate how the GI strategy approach can enhance air quality and assess the negative impacts of biogenic volatile organic compounds (BVOCs) emitted by certain tree species in Ethiopia, using Hawassa as a case study.
View Article and Find Full Text PDFSci Total Environ
December 2024
Department of Earth System Science, University of California, Irvine, CA, USA. Electronic address:
We investigated the biogenic volatile organic compound (BVOC) emission rates and composition of Cupressaceae species and how the emissions change in response to moderate warming and more severe heat stress. A total of 8 species from 7 distinct Cupressaceae genera were targeted in this study and exposed to laboratory-simulated heatwaves. Each plant was enclosed in a temperature-controlled glass chamber and allowed to equilibrate at 30 °C for 24 h.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!