A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Application of terpenoids for the remediation of environmental water polluted with bisphenol A and its analogs using an in silico approach. | LitMetric

Nowadays, there is a global concern over water quality and the impact of contamination on both natural ecosystems and human well-being. Plastics, ubiquitous in modern life, may release harmful chemicals when they reach aquatic environments. Among them, bisphenol A (BPA) and its alternatives, such as bisphenol S (BPS), bisphenol F (BPF), and others, are of special concern because their presence in water systems can have detrimental effects on human health and aquatic organisms due to their endocrine-disrupting properties. This study explores the potential of terpenoids, sustainable and environmentally friendly solvents, for efficiently removing bisphenols from contaminated environmental water. Using an in silico approach based on the Conductor-like Screening Model for Realistic Solvents (COSMO-RS) theory, more than 30 terpenoids were screened, and carvone was found to be an excellent candidate due to its high solvent capacity and low toxicity. The impact of pH, temperature, stirring conditions, and sample:extractant phase ratios on the extraction efficiency were investigated. A design of experiments revealed optimal conditions for the extraction process and demonstrated that carvone can effectively extract bisphenols (nearly 100 % for most of them) under a wide range of conditions, showing the robustness and efficiency of the extraction method, even in environmental samples. The paper provides valuable insights into the potential of terpenoids, specifically carvone, as a sustainable and eco-friendly solvent for removing bisphenol contaminants from environmental water bodies. The findings of this study offer a promising solution to address water contamination issues, aligning with the principles of Green Chemistry and contributing to a more environmentally responsible approach to water remediation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.175888DOI Listing

Publication Analysis

Top Keywords

environmental water
12
silico approach
8
potential terpenoids
8
water
7
bisphenol
5
application terpenoids
4
terpenoids remediation
4
environmental
4
remediation environmental
4
water polluted
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!