Biofouling in membrane distillation (MD) has several repercussions, including reduced efficiency of the MD process and limiting membrane life. Additionally, the evaluation of MD biofouling using treated effluents from wastewater treatment plants remains an unexplored area. Thus, biofouling formation and development in a long term MD process (15 days) using treated effluent from a wastewater treatment plant was explored in this study. The results revealed that flux decline occurred in four phases: i) initial decline (0-1 d), ii) gradual decline (1-5 d), iii) progressive decline (5-10 d), and iv) rapid decline (10-15 d). Liquid Chromatography-Organic Carbon Detection (LC-OCD) analysis demonstrated that the treated effluent contained humic-like substances, which deposited on the membrane surface in phase 1. Whereas biopolymers development on the membrane surface in phase 2 and 3 was linked to biofouling. Microbial community analysis revealed that the initial colonisers were predominantly thermophilic bacteria, which were different from the microbial community of the treated effluent. The biofilm-forming bacteria included Schlegelella, Meiothermus, and Vulcaniibacterium. These microorganisms proliferate and release excessive extracellular polymeric substances (EPS), leading to the development of mature biofilm on membrane surface. This helped in the deposition of organics and inorganics from the bulk feed, which led to microbial community succession in phase 4 with the emergence of the Kallotenue genus. The results suggested that organic substances and microbial communities on membrane surface at different stages in a long-term MD process had a significant influence on MD performance for high-quality wastewater reuse.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2024.119864 | DOI Listing |
J Contam Hydrol
December 2024
Department of Soil Science, Faculty of Agricultural Sciences, University of Guilan, Rasht 41635-1314, Iran.
Microbially induced calcite precipitation (MICP) while neutralizing soil pH, can lead to pore clogging which in turn may reduce bacteria transport. This study aimed to evaluate the effectiveness of the MICP process for E. coli filtration in two acidic soils.
View Article and Find Full Text PDFBMC Nephrol
December 2024
Head Doctor of the Dialysis Medical Center LLC, "Nephrocenter", Dovzhenka 3, Kyiv, 03057, Ukraine.
Background: The impact of protein-bound uremic toxins, specifically indoxyl sulfate (IS) on peritoneal dialysis (PD) complications remains controversial. This study aimed to explore the link between serum total IS (tIS) levels, proinflammatory cytokines in serum and peritoneal dialysis effluent (PDE), and PD technique survival.
Methods: In this prospective cohort study, 84 patients were followed up for three years and analyzed.
Water Res
December 2024
GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, c/ Jordi Girona 1-3, Building D1, Barcelona 08034, Spain. Electronic address:
Cyanobacterial wastewater-based biorefineries are a sustainable alternative to obtain high-value products with reduced costs. This study aimed to obtain phycobiliproteins and carotenoids, along with biogas from a wastewater-borne cyanobacterium grown in secondary effluent from an urban wastewater treatment plant, namely treated wastewater. For the first time, the presence of contaminants of emerging concern in concentrated pigment extracts was assessed.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, 163 Horria Ave. El-Shatby, P.O. Box 832, Alexandria, Egypt.
Phenol is a highly concerning pollutant in petrochemical industrial wastewater. It is extremely poisonous, carcinogenic, and persistent, therefore, it bioaccumulates in the food chain reaching humans, where it causes acute irritation to the skin, eyes, and respiratory tract, as well as chronic effects on the liver, kidneys, and nervous system. It spills or leaks easily into surface water or groundwater sources, leading to the creation of other harmful substituted compounds.
View Article and Find Full Text PDFCureus
November 2024
Department of Nephrology, Nagasaki University Hospital, Nagasaki, JPN.
A 63-year-old woman undergoing peritoneal dialysis (PD) presented to our hospital with abdominal pain, diarrhea, and cloudy PD effluent. An elevated white blood cell count in the PD effluent led to a diagnosis of PD-associated peritonitis. She was subsequently started on intraperitoneal cefazolin and ceftazidime, after which her condition improved rapidly.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!