Conjugative plasmids are important vectors of mobile antibiotic resvistance genes (ARGs), facilitating their horizontal transfer within the environment. While composting is recognized as an effective method to reduce antibiotics and ARGs in animal manure, its impact on the bacterial host communities containing antibiotic-resistant plasmids remains unclear. In this study, we investigated the permissiveness of bacterial community during composting when challenged with multidrug-resistant conjugative RP4 plasmids, employing Pseudomonas putida as the donor strain. Ultimately, this represents the first exploration of the effects of aeration rates on the range of RP4 plasmid transfer hosts. Transconjugants were analyzed through fluorescent reporter gene-based fluorescence-activated cell sorting and Illumina sequencing. Overall, aeration rates were found to influence various physicochemical parameters of compost, including temperature, pH, total organic matter, total nitrogen, and potassium. Regarding RP4 plasmid host bacteria, the dominant phylum was determined to shift from Bacteroidetes in the raw material to Proteobacteria in the compost. Notably, a moderate-intensity aeration rate (0.05 L/min/L) was found to be more effective in reducing the diversity and richness of the RP4 plasmid host bacterial community. Following composting, the total percentage of dominant transconjugant-related genera decreased by 66.15-76.62%. Ultimately, this study determined that the aeration rate negatively impacts RP4 plasmid host abundance primarily through alterations to the environmental factors during composting. In summary, these findings enhance our understanding of plasmid host bacterial communities under varying composting aeration rates and offer novel insights into preventing the dissemination of ARGs from animal manure to farmland.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2024.124851 | DOI Listing |
Water Res
December 2024
State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China.
The dissemination of antibiotic resistance genes (ARGs) poses global environmental issues, and plasmid-mediated conjugation contributes substantially to the spread of ARGs. Quorum sensing (QS), an important cell-cell communication system that coordinates group behaviors, has potential as a feasible regulation pathway to inhibit the conjugation process. We examined the promoting effects of QS signal on conjugation, and this study is the first to report that QS inhibitors 2(3H)-benzofuranone and acylase I effectively repressed conjugation frequency of RP4 plasmid to 0.
View Article and Find Full Text PDFJ Hazard Mater
November 2024
NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore; Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore. Electronic address:
Aquaculture water with antibiotic resistance genes (ARGs) is escalating due to the horizontal gene transfer. Non-antibiotic stressors specifically found, including those from fishery feed and disinfectants, are potential co-selectors. However, the mechanisms underlying this process remains unclear.
View Article and Find Full Text PDFChemosphere
November 2024
Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming, 650500, China. Electronic address:
Antibiotic resistance genes are primarily spread through horizontal gene transfer in aquatic environments. Bisphenols, which are widely used in industry, are pervasive contaminants in such environments. This study investigated how environmentally relevant concentrations of bisphenol A and its substitute (bisphenol S, Bisphenol AP and Bisphenol AF) affect the spread of antibiotic resistance genes among Escherichia coli.
View Article and Find Full Text PDFInt J Antimicrob Agents
December 2024
College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China. Electronic address:
The plasmid-mediated conjugative transfer of antibiotic resistance genes (ARGs) stands out as the primary driver behind the dissemination of antimicrobial resistance (AMR). Developing effective inhibitors that target conjugative transfer represents an potential strategy for addressing the issue of AMR. Here, we studied the effect of acetylshikonin (ASK), a botanical derivative, on plasmid conjugation.
View Article and Find Full Text PDFSci Total Environ
December 2024
Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, the Chinese Academy of Sciences & Hubei Province, Wuhan 430074, China; Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!