As the call for an international standard for milk from grassland-based production systems continues to grow, so too do the monitoring and evaluation policies surrounding this topic. Individual stipulations by countries and milk producers to market their milk under their own grass-fed labels include a compulsory number of grazing days per year (ranging from 120 d for certain labels to 180 d for others), a specified amount of herbage in the diet, or a prescribed dietary proportion of grassland-based forages (GBF) fed and produced on-farm. As these multifarious policy and label requirements are laborious and costly to monitor on-farm, fast economical proxies would be advantageous to verify the proportion of GBF consumed by the cows in the final product. With this in mind, we employed readily available mid-infrared spectral data (n = 1,132 spectra) from routine milk controls to develop binary classification models for 4 main feed groups from a primarily forage-based diet: total GBF (≥50% [n = 955], ≥75% [n = 599], ≥85% [n = 356]), pasture (≥20% [n = 451], ≥50% [n = 284], ≥70% [n = 152]), fresh herbage (pasture + fresh herbage indoor feeding; ≥20% [n = 517], ≥50% [n = 325], ≥70% [n = 182]), and whole plant corn (fresh + conserved; ≥10% [n = 646], ≥30% [n = 187]), with the latter as a negative control. We compared 4 machine learning methods to assess which statistical model performs best at discriminating these classes. Three of these models have not yet been tested for herd-level dietary proportion classification, and all 4 follow completely different approaches: least absolute shrinkage and selection operator (LASSO), partial least squares discriminant analysis (PLS-DA), random forest (RF), and support vector machines (SVM). Seasonality has been a missing element from previous dietary herbage proportion classification models. As grazing and fresh herbage indoor feeding are highly dependent on the season, we developed an indicator to incorporate seasonality in a consistent, unbiased manner into our models. We also tested 3 sets of covariates. The first set included only mid-infrared spectra derived data, the second included mid-infrared spectra derived data plus seasonality indices and the third included mid-infrared spectra derived data, seasonality indices and additional herd specific information (DIM, breed, and parity). Of the 4 machine learning algorithms tested for the binary classification of GBF proportion at herd level, LASSO and PLS-DA performed best according to evaluation metrics; however, the RF and SVM models were not far behind the best performing model evaluation metrics in each feed category. Our best performing model, the LASSO model containing seasonality indices and herd specific information, classified total GBF ≥50% with an accuracy of 78.6%, precision of 85.1%, sensitivity of 90.6%, specificity of 14.1%, and F1 score (harmonic mean of precision and sensitivity) of 87.7%; this was very similar to the PLS-DA model. Our results suggest that in general, LASSO and PLS-DA machine learning algorithms perform better for dietary GBF classification than RF or SVM algorithms.

Download full-text PDF

Source
http://dx.doi.org/10.3168/jds.2024-25090DOI Listing

Publication Analysis

Top Keywords

machine learning
16
learning algorithms
12
fresh herbage
12
included mid-infrared
12
mid-infrared spectra
12
spectra derived
12
derived data
12
seasonality indices
12
proportion grassland-based
8
grassland-based forages
8

Similar Publications

Background: Acute pain management is critical in postoperative care, especially in vulnerable patient populations that may be unable to self-report pain levels effectively. Current methods of pain assessment often rely on subjective patient reports or behavioral pain observation tools, which can lead to inconsistencies in pain management. Multimodal pain assessment, integrating physiological and behavioral data, presents an opportunity to create more objective and accurate pain measurement systems.

View Article and Find Full Text PDF

Cross-Cultural Sense-Making of Global Health Crises: A Text Mining Study of Public Opinions on Social Media Related to the COVID-19 Pandemic in Developed and Developing Economies.

J Med Internet Res

January 2025

Unitat de Recerca i Innovació, Gerència d'Atenció Primària i a la Comunitat de la Catalunya Central, Institut Català de la Salut, Sant Fruitós de Bages, Spain.

Background: The COVID-19 pandemic reshaped social dynamics, fostering reliance on social media for information, connection, and collective sense-making. Understanding how citizens navigate a global health crisis in varying cultural and economic contexts is crucial for effective crisis communication.

Objective: This study examines the evolution of citizen collective sense-making during the COVID-19 pandemic by analyzing social media discourse across Italy, the United Kingdom, and Egypt, representing diverse economic and cultural contexts.

View Article and Find Full Text PDF

Large language models (LLMs) are being increasingly incorporated into scientific workflows. However, we have yet to fully grasp the implications of this integration. How should the advancement of large language models affect the practice of science? For this opinion piece, we have invited four diverse groups of scientists to reflect on this query, sharing their perspectives and engaging in debate.

View Article and Find Full Text PDF

Prediction of hip fracture by high-resolution peripheral quantitative computed tomography in older Swedish women.

J Bone Miner Res

January 2025

Sahlgrenska Osteoporosis Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.

The socioeconomic burden of hip fractures, the most severe osteoporotic fracture outcome, is increasing and the current clinical risk assessment lacks sensitivity. This study aimed to develop a method for improved prediction of hip fracture by incorporating measurements of bone microstructure and composition derived from high-resolution peripheral quantitative computed tomography (HR-pQCT). In a prospective cohort study of 3028 community-dwelling women aged 75 to 80, all participants answered questionnaires and underwent baseline examinations of anthropometrics and bone by dual x-ray absorptiometry (DXA) and HR-pQCT.

View Article and Find Full Text PDF

With the increasing number of patients with Alzheimer's Disease (AD), the demand for early diagnosis and intervention is becoming increasingly urgent. The traditional detection methods for Alzheimer's disease mainly rely on clinical symptoms, biomarkers, and imaging examinations. However, these methods have limitations in the early detection of Alzheimer's disease, such as strong subjectivity in diagnostic criteria, high detection costs, and high misdiagnosis rates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!