The development of broadly neutralizing antibody (bnAb)-based therapeutic HIV-1 vaccines and cure concepts depends on monitoring bnAb plasma activity in people with HIV (PWH) on suppressive antiretroviral therapy (ART). To enable this, analytical strategies must be defined to reliably distinguish antibody-based neutralization from drug inhibition. Here, we explore strategies that either utilize drug-resistant viruses or remove drugs from plasma. We develop ART-DEX (ART dissociation and size exclusion), an approach which quantitatively separates drugs from plasma proteins following pH-triggered release allowing accurate definition of antibody-based neutralization. We demonstrate that ART-DEX, alone or combined with ART-resistant viruses, provides a highly effective and scalable means of assessing antibody neutralization during ART. Implementation of ART-DEX in standard neutralization protocols should be considered to enhance the analytical capabilities of studies evaluating bnAb therapeutics and therapeutic vaccines, furthering the development of advanced ART and HIV-1 cure strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11524982PMC
http://dx.doi.org/10.1016/j.xcrm.2024.101702DOI Listing

Publication Analysis

Top Keywords

drug inhibition
8
broadly neutralizing
8
neutralizing antibody
8
antibody-based neutralization
8
drugs plasma
8
decoupling hiv-1
4
hiv-1 antiretroviral
4
antiretroviral drug
4
plasma
4
inhibition plasma
4

Similar Publications

Malignant gliomas are heterogeneous tumors, mostly incurable, arising in the central nervous system (CNS) driven by genetic, epigenetic, and metabolic aberrations. Mutations in isocitrate dehydrogenase (IDH1/2) enzymes are predominantly found in low-grade gliomas and secondary high-grade gliomas, with IDH1 mutations being more prevalent. Mutant-IDH1/2 confers a gain-of-function activity that favors the conversion of a-ketoglutarate (α-KG) to the oncometabolite 2-hydroxyglutarate (2-HG), resulting in an aberrant hypermethylation phenotype.

View Article and Find Full Text PDF

Dysregulation of GABAergic inhibition is associated with pathological pain. Consequently, enhancement of GABAergic transmission represents a potential analgesic strategy. However, therapeutic potential of current GABA agonists and modulators is limited by unwanted side effects.

View Article and Find Full Text PDF

Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive sarcomas and the primary cause of mortality in patients with neurofibromatosis type 1 (NF1). These malignancies develop within preexisting benign lesions called plexiform neurofibromas (PNs). PNs are solely driven by biallelic loss eliciting RAS pathway activation, and they respond favorably to MEK inhibitor therapy.

View Article and Find Full Text PDF

VCP controls KCC2 degradation through FAF1 recruitment and accelerates emergence from anesthesia.

Proc Natl Acad Sci U S A

January 2025

Department of Medical Neuroscience, SUSTech Center for Pain Medicine, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China.

Ubiquitin-proteasomal degradation of K/Cl cotransporter 2 (KCC2) in the ventral posteromedial nucleus (VPM) has been demonstrated to serve as a common mechanism by which the brain emerges from anesthesia and regains consciousness. Ubiquitin-proteasomal degradation of KCC2 during anesthesia is driven by E3 ligase Fbxl4. However, the mechanism by which ubiquitinated KCC2 is targeted to the proteasome has not been elucidated.

View Article and Find Full Text PDF

Natural killer (NK) cells have proven to be safe and effective immunotherapies, associated with favorable treatment responses in chronic myeloid leukemia (CML). Augmenting NK cell function with oncological drugs could improve NK cell-based immunotherapies. Here, we used a high-throughput drug screen consisting of over 500 small-molecule compounds to systematically evaluate the effects of oncological drugs on primary NK cells against CML cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!