Lipid nanoparticles (LNPs) have become pivotal in advancing modern medicine, from mRNA-based vaccines to gene editing with CRISPR-Cas9 systems. Though LNPs based therapeutics offer promising drug delivery with satisfactory clinical safety profiles, concerns are raised regarding their potential nanotoxicity. Here, we explore the impacts of LNPs on protein stability in buffer and cellular protein homeostasis (proteostasis) in HepG2 cells. First, we show that LNPs of different polyethylene glycol (PEG) molar ratios to total lipid ratio boost protein aggregation propensity by reducing protein stability in cell lysate and blood plasma. Second, in HepG2 liver cells, these LNPs induce global proteome aggregation, as imaged by a cellular protein aggregation fluorescent dye (AggStain). Such LNPs induced proteome aggregation is accompanied by decrease in cellular micro-environmental polarity as quantified by a solvatochromic protein aggregation sensor (AggRetina). The observed local polarity fluctuations may be caused by the hydrophobic contents of LNPs that promote cellular proteome aggregation. Finally, we exploit RNA sequencing analysis (RNA-Seq) to reveal activation of unfolded protein response (UPR) pathway and other proteostasis genes upon LNPs treatment. Together, these findings highlight that LNPs may induce subtle proteome stress by compromising protein stability and proteostasis even without obvious damage to cell viability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2024.08.146 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!