Many solid tumors exhibit significant genetic, cellular, and biophysical heterogeneity which dynamically evolves during disease progression and after treatment. This constant flux in cell composition, phenotype, spatial relationships, and tissue properties poses significant challenges in accurately diagnosing and treating patients. Much of the complexity lies in unraveling the molecular changes in different tumor compartments, how they influence one another in space and time and where vulnerabilities exist that might be appropriate to target therapeutically. Recent advances in spatial profiling tools and technologies are enabling new insight into the underlying biology of complex tumors, creating a greater understanding of the intricate relationship between cell types, states, and the microenvironment. Here we reflect on some recent discoveries in this area, where the key knowledge and technology gaps lie, and the advancements in spatial measurements and in vitro models for the study of spatial intratumoral heterogeneity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ceb.2024.102422 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!