Dormancy in temperate fruit trees is a mechanism of temporary growth suspension, which is vital for tree survival during winter. Studies on this phenomenon frequently employ scientific methods that aim to detect the timing of dormancy release. Dormancy release occurs when trees have been exposed to sufficient chill, allowing them to resume growth under conducive conditions. This study investigates dormancy dynamics in two apple (Malus × domestica Borkh.) cultivars, 'Nicoter' and 'Topaz', by sampling branches in an orchard over 14 weeks (2019 to 2020) and over 31 weeks (2021 to 2022) and subjecting them to a 42-day budbreak forcing period in a growth chamber. Temporal changes in budbreak percentages demonstrated dormancy progression in the studied apple cultivars and allowed the three main dormancy phases to be distinguished: paradormancy (summer dormancy), endodormancy (deep dormancy) and ecodormancy (spring dormancy), along with transition periods between them. Using these data, we explored the suitability of several alternative methods to determine endodormancy release. Tabuenca's test, which predicts dormancy release based on the differences in dry weights of buds with and without forcing, showed promise for this purpose. However, our data indicated a need for considerable adjustments and validation of this test. Bud weight and water content of buds in the orchard did not align with budbreak percentages under forcing conditions, rendering them unsuitable for determining endodormancy release in 'Nicoter' and 'Topaz'. Shoot growth cessation did not seem to be connected with either dormancy progression or dormancy depth of the studied cultivars, whereas leaf fall coincided with the beginning of the transition from endo- to ecodormancy. This work addresses methodological limitations in dormancy research and suggests considering the mean time to budbreak and budbreak synchrony as additional criteria to assess tree dormancy status.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11447376 | PMC |
http://dx.doi.org/10.1093/treephys/tpae112 | DOI Listing |
Prostate cancer (PCa) is mainly managed with androgen deprivation therapy (ADT), but this often leads to a dormant state and subsequent relapse as lethal castration-resistant prostate cancer (CRPC). Using our unique PCa patient-derived xenograft (PDX) dormancy models, we investigated this critical dormant phase and discovered a selective increase in B7-H4 expression during the dormancy period following mouse host castration. This finding is supported by observations in clinical specimens of PCa patients treated with ADT.
View Article and Find Full Text PDFPlant Physiol
January 2025
Germplasm Bank of Wild Species, State Key Laboratory of Plant Diversity and Specialty Crops & Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
J Exp Bot
January 2025
College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, Yunnan 650201, China.
DNA methylation plays a crucial role in regulating fruit ripening and seed development. It remains unknown about the dynamic characteristics of DNA methylation and its regulation mechanisms in morpho-physiological dormancy (MPD)-typed seeds with recalcitrant characteristics. The Panax notoginseng seeds are defined by the MPD and are characterized by a strong sensitivity to dehydration during the after-ripening process.
View Article and Find Full Text PDFProc Biol Sci
January 2025
Indiana University, Bloomington, IN, USA.
Life has existed on Earth for most of the planet's history, yet major gaps and unresolved questions remain about how it first arose and persisted. Early Earth posed numerous challenges for life, including harsh and fluctuating environments. Today, many organisms cope with such conditions by entering a reversible state of reduced metabolic activity, a phenomenon known as dormancy.
View Article and Find Full Text PDFJ Bacteriol
January 2025
College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, China.
Bacterial spores can remain dormant for years, but they maintain the ability to recommence life through a process termed germination. Although spore germination has been reviewed many times, recent work has provided novel conceptual and molecular understandings of this important process. By using as a model organism, here we thoroughly describe the signal transduction pathway and events that lead to spore germination, incorporating the latest findings on transcription and translation that are likely detected during germination.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!