Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Floxuridine is a potential clinical anticancer drug for the treatment of various cancers. However, floxuridine typically causes unfavorable side effects due to its very poor tumor selectivity, and, hence, there is a high demand for the development of novel approaches that permit the targeted delivery of floxuridine into cancerous cells. Herein, the design and synthesis of an esterase-responsive multifunctional nanoformulation for the targeted delivery of floxuridine in esterase-overexpressed cancer cells is reported. Photopolymerization of floxuridine-tethered lipoic acid results in the formation of amphiphilic floxuridine-tethered poly(disulfide). Self-assembly of the amphiphilic polymer results in the formation of nanoparticles with floxuridine decorated on the surfaces of the particles. Integration of aptamer DNA for nucleolin onto the surface of the nanoparticle is demonstrated by exploring the base-pairing interaction of floxuridine with adenine. Targeted internalization of the aptamer-decorated nanoparticle into nucleolin-expressed cancer cells is demonstrated. Esterase triggered cleavage of the ester bond connecting floxuridine with the polymer backbone, and the subsequent targeted delivery of floxuridine into cancer cells is also shown. Excellent therapeutic efficacy is observed both in vitro and also in the 3D tumor spheroid model. This noncovalent strategy provides a simple yet effective strategy for the targeted delivery of floxuridine into cancer cells in a less laborious fashion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsabm.4c00886 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!