A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Refining sleep staging accuracy: transfer learning coupled with scorability models. | LitMetric

Study Objectives: This study aimed to (1) improve sleep staging accuracy through transfer learning (TL), to achieve or exceed human inter-expert agreement and (2) introduce a scorability model to assess the quality and trustworthiness of automated sleep staging.

Methods: A deep neural network (base model) was trained on a large multi-site polysomnography (PSG) dataset from the United States. TL was used to calibrate the model to a reduced montage and limited samples from the Korean Genome and Epidemiology Study (KoGES) dataset. Model performance was compared to inter-expert reliability among three human experts. A scorability assessment was developed to predict the agreement between the model and human experts.

Results: Initial sleep staging by the base model showed lower agreement with experts (κ = 0.55) compared to the inter-expert agreement (κ = 0.62). Calibration with 324 randomly sampled training cases matched expert agreement levels. Further targeted sampling improved performance, with models exceeding inter-expert agreement (κ = 0.70). The scorability assessment, combining biosignal quality and model confidence features, predicted model-expert agreement moderately well (R² = 0.42). Recordings with higher scorability scores demonstrated greater model-expert agreement than inter-expert agreement. Even with lower scorability scores, model performance was comparable to inter-expert agreement.

Conclusions: Fine-tuning a pretrained neural network through targeted TL significantly enhances sleep staging performance for an atypical montage, achieving and surpassing human expert agreement levels. The introduction of a scorability assessment provides a robust measure of reliability, ensuring quality control and enhancing the practical application of the system before deployment. This approach marks an important advancement in automated sleep analysis, demonstrating the potential for AI to exceed human performance in clinical settings.

Download full-text PDF

Source
http://dx.doi.org/10.1093/sleep/zsae202DOI Listing

Publication Analysis

Top Keywords

sleep staging
16
inter-expert agreement
16
scorability assessment
12
agreement
10
staging accuracy
8
accuracy transfer
8
transfer learning
8
exceed human
8
model
8
automated sleep
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!