A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiondb3onso8tpmb5tctkgec3s7u6l25vgup): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

Nitrogen availability and summer drought, but not N:P imbalance, drive carbon use efficiency of a Mediterranean tree-grass ecosystem. | LitMetric

AI Article Synopsis

  • Ecosystems act as both sources and sinks for atmospheric carbon (C), and their carbon use efficiency (CUE) is crucial for mitigating climate change.
  • Increased nitrogen (N) availability from human activities may lead to phosphorus (P) limitations in terrestrial ecosystems, affecting how plants and microorganisms utilize carbon.
  • In a Mediterranean tree-grass ecosystem study, it was found that wetter conditions and N fertilization improved CUE, but seasonal changes and potential longer dry summers could decrease CUE in the future.

Article Abstract

All ecosystems contain both sources and sinks for atmospheric carbon (C). A change in their balance of net and gross ecosystem carbon uptake, ecosystem-scale carbon use efficiency (CUE), is a change in their ability to buffer climate change. However, anthropogenic nitrogen (N) deposition is increasing N availability, potentially shifting terrestrial ecosystem stoichiometry towards phosphorus (P) limitation. Depending on how gross primary production (GPP, plants alone) and ecosystem respiration (R, plants and heterotrophs) are limited by N, P or associated changes in other biogeochemical cycles, CUE may change. Seasonally, CUE also varies as the multiple processes that control GPP and respiration and their limitations shift in time. We worked in a Mediterranean tree-grass ecosystem (locally called 'dehesa') characterized by mild, wet winters and summer droughts. We examined CUE from eddy covariance fluxes over 6 years under control, +N and + NP fertilized treatments on three timescales: annual, seasonal (determined by vegetation phenological phases) and 14-day aggregations. Finer aggregation allowed consideration of responses to specific patterns in vegetation activity and meteorological conditions. We predicted that CUE should be increased by wetter conditions, and successively by N and NP fertilization. Milder and wetter years with proportionally longer growing seasons increased CUE, as did N fertilization, regardless of whether P was added. Using a generalized additive model, whole ecosystem phenological status and water deficit indicators, which both varied with treatment, were the main determinants of 14-day differences in CUE. The direction of water effects depended on the timescale considered and occurred alongside treatment-dependent water depletion. Overall, future regional trends of longer dry summers may push these systems towards lower CUE.

Download full-text PDF

Source
http://dx.doi.org/10.1111/gcb.17486DOI Listing

Publication Analysis

Top Keywords

carbon efficiency
8
mediterranean tree-grass
8
tree-grass ecosystem
8
cue
8
cue change
8
ecosystem
6
nitrogen availability
4
availability summer
4
summer drought
4
drought imbalance
4

Similar Publications

CoP-Enhanced CaTiO Single-Electron Oxygen Reduction Piezoelectric Catalysis for HO Production.

Inorg Chem

December 2024

State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China.

Piezoelectric catalytic production of HO is a novel and environmentally friendly HO production method, and many piezoelectric catalysts are currently being developed. However, all of them have the disadvantages of precious metals as cocatalysts and low catalytic efficiency. Herein, CaTiO was successfully prepared and loaded with the nonprecious metal CoP (CoP/CaTiO) for piezoelectric catalytic production of HO.

View Article and Find Full Text PDF

Solvent-Free Chemical Recycling of Polyesters and Polycarbonates by Magnesium-based Lewis Acid Catalyst.

Angew Chem Int Ed Engl

December 2024

Jilin University College of Chemistry, State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, 2699 Qianjin Street, 130012, Changchun, CHINA.

Developing a simple and efficient catalyst system for closed-loop recycling of polymers to monomers is an essentially important but challenging task for the recycle of polymer wastes and preventing the downcycle of plastic products. Herein, we employ inexpensive, commercially available Lewis acids (LAs) to achieve closed-loop recycling in bulk through the catalytic depolymerization of aliphatic polyesters and polycarbonates. The scope of LAs is screened by thermogravimetric analysis experiments and distillation experiments.

View Article and Find Full Text PDF

High-performance infrared light sources have significantly influenced the fields of photonics and optoelectronics. However, achieving infrared light emission with low energy consumption, high brightness, and rapid response remains a huge challenge. Single-walled carbon nanotubes (SWCNTs) could be an important candidate for infrared light emitters because of their superior electron mobility and phonon transport efficiency.

View Article and Find Full Text PDF

Optimizing Acidic Oxygen Evolution with Manganese-Doped Ruthenium Dioxide Assembly.

ACS Appl Mater Interfaces

December 2024

College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China.

Ruthenium dioxide (RuO) is one of the promising catalysts for the acidic oxygen evolution reaction (OER). However, designing RuO catalysts with good activity and stability remains a significant challenge. In this work, we propose the manganese (Mn)-doped RuO assembly as a catalyst for the OER with improved activity and stability.

View Article and Find Full Text PDF

Among the numerous residential appliances, window or split air conditioners are the most prevalent. The hydrochlorofluorocarbon and hydrofluorocarbon refrigerants used in those systems are causing a serious threat to the environment. In this study, R290-hydrofluoroolefin (HFO) mixtures are proposed as replacements for high-GWP substances (R410A and R22) in window air conditioning (WAC) units.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!