A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Calcitriol attenuates inflammatory response in the lung of diabetes mellitus rat model. | LitMetric

Calcitriol attenuates inflammatory response in the lung of diabetes mellitus rat model.

Med J Malaysia

Universitas Gadjah Mada, Faculty of Medicine, Public Health and Nursing, Department of Anatomy, Yogyakarta, Indonesia.

Published: August 2024

AI Article Synopsis

  • The study investigates how diabetes can lead to lung damage due to inflammation and explores the potential protective role of Vitamin D against this damage.
  • Thirty rats were divided into groups to test different doses of Vitamin D and measure inflammation-related gene expressions in lung tissues.
  • Results indicated that higher Vitamin D doses significantly reduced harmful inflammation markers in the lungs of diabetic rats, suggesting Vitamin D may help mitigate lung damage caused by diabetes.

Article Abstract

Introduction: Inflammation caused by diabetes can damage multiple organs, including the lungs. Vitamin D (VD) has been shown to potentially reduce inflammation and boost the immune system. VD might play a role in diabetes' inflammatory response. This study aims to elucidate the evidence regarding the lung as the target organ for DM and the possible role of VD in preventing pulmonary damage progression in the diabetes rat model.

Material And Methods: Thirty Sprague Dawley rats (3-monthold, 200 to 300 gm) were randomly divided into six groups, namely control (C), 4 weeks diabetes mellitus (DM1), 8 weeks DM (DM2) and three DM1 groups (VD1, VD2, and VD3) who received Vitamin D doses of 0.125, 0.25 and 0.50 μg/kg BW, respectively. After 4 weeks, daily VD was administered intraperitoneally for 30 days. Lung tissues were taken for IL- 6, MCP-1, NFKB and CD68 mRNA expression analysis and paraffin embedding. Immunohistochemical staining against CD68 and MCP-1 was conducted. Data were analysed using one-way ANOVA. p < 0.05 was considered statistically significant.

Results: DM2 group represented significantly higher IL6, MCP1, NFKB and CD68 mRNA expression than Control group (p < 0.05). Meanwhile, VD2 and VD3 groups revealed significantly lower mRNA expression of IL-6, MCP1, NFKB and CD68 than DM2 (p < 0.05). Immunostaining revealed the spreading of MCP1 protein expression in lung tissue along with macrophage infiltration in the DM2 group, which was reduced in the VD2 and the VD3 groups.

Conclusion: VD shows a protective effect on diabetesinduced lung damage by regulating inflammation factors.

Download full-text PDF

Source

Publication Analysis

Top Keywords

vd2 vd3
12
nfkb cd68
12
mrna expression
12
inflammatory response
8
diabetes mellitus
8
cd68 mrna
8
dm2 group
8
mcp1 nfkb
8
lung
5
calcitriol attenuates
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!