AI Article Synopsis

  • PLIN1 is a crucial protein that affects lipid metabolism and energy balance, and it has a significant relationship with tumor development, particularly in hepatocellular carcinoma (HCC).
  • Research showed that lower levels of PLIN1 are associated with poorer outcomes for HCC patients, suggesting its importance as a prognostic marker.
  • Overexpressing PLIN1 in HCC cells led to reduced cell growth, migration, and invasion, impacting the cell cycle and indicating that PLIN1 influences key biological processes related to cancer progression.

Article Abstract

Background & Aims: Perilipin 1 (PLIN1) is an essential lipid droplet surface protein that participates in cell life activities by regulating energy balance and lipid metabolism. PLIN1 has been shown to be closely related to the development of numerous tumor types. The purpose of this work was to elucidate the clinicopathologic significance of PLIN1 in hepatocellular carcinoma (HCC), as well as its impact on the biological functions of HCC cells, and to investigate the underlying mechanisms involved.

Methods: Public high-throughput RNA microarray and RNA sequencing data were collected to examine PLIN1 levels and clinical significance in patients with HCC. Immunohistochemistry (IHC) and real-time quantitative reverse transcription polymerase chain reaction (RT‒qPCR) were conducted to assess the expression levels and the clinicopathological relevance of PLIN1 in HCC. Then, SK and Huh7 cells were transfected with a lentivirus overexpressing PLIN1. CCK8 assay, wound healing assay, transwell assay, and flow cytometric analysis were conducted to explore the effects of PLIN1 overexpression on HCC cell proliferation, migration, invasion, and cell cycle distribution. Ultimately, Gene Ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed to investigate the underlying mechanisms of PLIN1 in HCC progression based on HCC differentially expressed genes and PLIN1 co-expressed genes.

Results: PLIN1 was markedly downregulated in HCC tissues, which correlated with a noticeably worse prognosis for HCC patients. Additionally, PLIN1 overexpression inhibited the proliferation, migration, and invasion of SK and Huh7 cells in vitro, as well as arresting the HCC cell cycle at the G0/G1 phase. More significantly, energy conversion-related biological processes, lipid metabolism, and cell cycle signalling pathways were the three most enriched molecular mechanisms.

Conclusion: The present study revealed that PLIN1 downregulation is associated with poor prognosis in HCC patients and accelerated HCC progression by promoting cellular proliferation, migration, and metastasis, as well as the mechanisms underlying the regulation of lipid metabolism-related pathways in HCC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11363539PMC
http://dx.doi.org/10.1186/s12885-024-12842-1DOI Listing

Publication Analysis

Top Keywords

plin1
13
hcc
13
proliferation migration
12
cell cycle
12
plin1 hepatocellular
8
hepatocellular carcinoma
8
lipid metabolism
8
investigate underlying
8
underlying mechanisms
8
plin1 hcc
8

Similar Publications

Background: The fat tail of sheep is an adaptive trait that facilitates their adaptation to harsh natural environments. MicroRNAs (miRNAs) have been demonstrated to play crucial roles in the regulation of tail fat deposition.

Methods: In this study, miRNA-Seq was employed to investigate the expression profiles of miRNAs during different developmental stages of sheep fat tails and elucidate the functions of differentially expressed miRNAs (DE miRNAs).

View Article and Find Full Text PDF

Adipose dystrophy, also known as lipodystrophy, is a heterogeneous disease characterized by the complete or partial loss of adipose tissue. In some cases, patients with lipodystrophy may exhibit fat accumulation in other areas of the body, as well as metabolic abnormalities such as insulin resistance, hyperlipidemia, liver disease, and increased metabolic rate. The condition may also be associated with gene mutations, including those in acylglycerol-3-phosphate O-acyltransferase 2 (AGPAT2), Berardinelli-Seip Congenital Lipodystrophy 2 (BSCL2), caveolin-1 (CAV1), polymerase I and transcript release factor (PTRF), lamins A (LMNA), zinc metalloproteinase (ZMPSTE24), peroxisome proliferator-activated receptor gamma (PPARG), v-AKT murine thymoma oncogene homolog 2 (AKT2), perilipin 1 (PLIN1), and proteasome subunit, β-type, 8 (PSMB8).

View Article and Find Full Text PDF

Intramuscular fat (IMF) content plays a crucial role in determining pork quality. Recent studies have highlighted transcriptional mechanisms controlling adipogenesis in porcine IMF. However, the changes in chromatin accessibility during adipogenic differentiation are still not well understood.

View Article and Find Full Text PDF

Background: Castration is a common practice in beef cattle production systems to manage breeding and enhance meat quality by promoting intramuscular fat (IMF) deposition, known as marbling. However, the molecular mechanisms that are influenced by castration in beef cattle are poorly understood. The aim of this study was to identify differentially expressed genes (DEGs) and metabolic pathways that regulate IMF deposition in crossbred cattle by RNA sequencing (RNA-Seq) of skeletal muscle tissue.

View Article and Find Full Text PDF

The intramuscular oleic-to-stearic fatty acid ratio (C18:1n-9/C18:0) is an important indicator of the biosynthesis and desaturation of fatty acids in muscle. By using an RNA-Seq approach in muscle samples from 32 BC1_DU (25% Iberian and 75% Duroc) pigs with divergent values (high: H and low: L) of C18:1n-9/C18:0 fatty acids ratio, a total of 81 differentially expressed genes (DEGs) were identified. Functional analyses of DEGs indicate that mainly peroxisome proliferator-activated receptor signaling pathway (associated genes: PPARG, SCD, PLIN1, and FABP3) was overrepresented.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!