The optimal discrete element model and bonding parameters that match the structural features of cornstalks during harvest were obtained. Based on the differences in mechanical properties of the stem bark and stem pith in the inter-nodal cornstalk, the biomechanical-specific parameters were measured using the compression, shear, and bending tests. The bonded particle models of stem bark and stem pith were constructed using fraction particles with radii of 1 mm and 1.47 mm, which were further bound to form a bilayer-bonded particle model of the cornstalk. The Plackett-Burman, steepest ascent, and response surface tests were conducted to identify the factors and their optimal values that significantly impacted the stem bark-stem bark, stem pith-stem pith, and stem bark-stem pith bonding parameters. The cornstalk's shear and bending mechanical properties were assessed to verify the overall characteristic parameters. The findings revealed that the cornstalk model created, and the calibrated bonding parameters, were highly accurate and capable of simulating the shearing and bending behaviors of the real cornstalk. The inter-nodal cornstalk's bonded particle model created and the identified bonding parameters for the cornstalk could contribute to a theoretical and research basis for the next stage in cornstalk modeling with nodes and other applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11364778 | PMC |
http://dx.doi.org/10.1038/s41598-024-71005-1 | DOI Listing |
Nanoscale
January 2025
Institue of Materials Chemistry, TU Wien, Getreidemarkt 9/E165, 1060 Vienna, Austria.
In the field of nanocluster catalysis, it is crucial to understand the interplay of different parameters, such as ligands, support and pretreatment and their effect on the catalytic process. In this study, we chose the selective hydrogenation of phenylacetylene as a model reaction and employed two gold nanoclusters as catalysts, the phosphine protected Au and the thiolate protected Au, each with different binding motifs. They were supported on MgO, AlO and a hydrotalcite (HT), chosen for their different acidity.
View Article and Find Full Text PDFQuant Imaging Med Surg
January 2025
Department of Imaging and Interventional Radiology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
Fatty acid can potentially serve as biomarker for evaluating metabolic disorder and inflammation condition, and quantifying the double bonds is the key for revealing fatty acid information. This study presents an assessment of a deep learning approach utilizing deep image prior (DIP) for the quantification of double bonds and methylene-interrupted double bonds of triglyceride derived from chemical-shift encoded multi-echo gradient echo images, all achieved without the necessity for network training. The methodology implemented a cost function grounded in signal constraints to continually refine the neural network's parameters on a single slice of images through iterative processes.
View Article and Find Full Text PDFSyst Rev
January 2025
Conservative Dentistry Department, Faculty of Dentistry, Mansoura University, Mansoura, Postal Code, 35516, Egypt.
Background: Hydrophilic monomer 2-hydroxyethyl methacrylate (HEMA)-free adhesive systems are gaining increasing popularity nowadays. Although the addition of HEMA to dental adhesives improves dentin wettability and resin diffusion into demineralized collagen fibrils, HEMA's high hydrophilicity can lead to hydrolytic degradation of the adhesive interface. Thus, HEMA-free adhesive systems have been developed.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Kenneth S. Pitzer Theory Center and Department of Chemistry, University of California, Berkeley, California 94720, United States.
This work constructs an advanced force field, the Completely Multipolar Model (CMM), to quantitatively reproduce each term of an energy decomposition analysis (EDA) for aqueous solvated alkali metal cations and halide anions and their ion pairings. We find that all individual EDA terms remain well-approximated in the CMM for ion-water and ion-ion interactions, except for polarization, which shows errors due to the partial covalency of ion interactions near their equilibrium. We quantify the onset of the dative bonding regime by examining the change in molecular polarizability and Mayer bond indices as a function of distance, showing that partial covalency manifests by breaking the symmetry of atomic polarizabilities while strongly damping them at short-range.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran.
The studies on ionic liquids (ILs) and their interaction with different solvents have always been an interesting topic for experimental and computational chemists. Recently, however, deep insights on the molecular structures of the IL-water binary mixtures have been mainly performed through classical simulations. Here, a comprehensive quantum mechanical study is presented on seven 1-butyl-3-methylimidazolium-based ILs in the absence and presence of water.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!