Deep learning artificial neural network framework to optimize the adsorption capacity of 3-nitrophenol using carbonaceous material obtained from biomass waste.

Sci Rep

Área Agroindustrial Alimentaria, Universidad Tecnológica de Xicotepec de Juárez, Av. Universidad Tecnológica No. 1000. Col. Tierra Negra Xicotepec de Juárez, 73080, Puebla, México.

Published: August 2024

The presence of toxic chemicals in water, including heavy metals like mercury and lead, organic pollutants such as pesticides, and industrial chemicals from runoff and discharges, poses critical public health and environmental risks leading to severe health issues and ecosystem damage; education plays a crucial role in mitigating these effects by enhancing awareness, promoting sustainable practices, and integrating environmental science into curricula to empower individuals to address and advocate for effective solutions to water pollution. However, the educational transformation should be accompanied with a technical process which can be eventually transferred to society to empower environmental education. In this study, carbonaceous material derived from Haematoxylum campechianum (CM-HC) was utilized for removing 3-nitrophenol (3-Nph) from aqueous solutions. The novelty of this research utilizes Haematoxylum campechianum bark and coconut shell, abundant agricultural wastes in Campeche, Mexico, for toxin removal, enhancing the adsorption process through artificial neural networks and genetic algorithms to optimize conditions and maximize the absorption efficiency. CM-HC's surface morphology was analyzed using scanning electron microscopy (SEM/EDS), BET method, X-ray powder diffraction (XRD), and pHpzc. Kinetic models including pseudo-first-order (PFO), pseudo-second-order (PSO), and Elovich were applied to fit the data. Adsorption isotherms were determined at varying pH (3-8), adsorbent dosages (2-10 g/L), and temperatures (300.15-330.15 K), employing Langmuir, Freundlich, Temkin, and Redlich-Peterson models. PSO kinetics demonstrated a good fit (R > 0.98) for Ci = 50-100 mg/L, indicating a chemical adsorption mechanism. The Langmuir isotherm model exhibited the best fit, confirming chemical adsorption, with a maximum adsorption capacity (Q) of 236.156 mg/g at T = 300.15 K, pH = 6, contact time = 3 h, and 2 g/L adsorbent dosage. Lower temperatures favored exothermic adsorption. Artificial neural networks (ANNs) were employed for deep learning, optimizing the predictive model for removal percentage. Correlation heat maps highlighted positive correlations between time, dosage, and removal percentage, emphasizing the impact of initial concentration on efficiency. ANN modeling, incorporating iterative optimization, yielded highly accurate predictions, aligned closely with experimental results. The study showcases the success of deep learning in optimizing adsorption processes, emphasizing the importance of diverse correlation algorithms for comprehensive insights into competitive adsorption dynamics. The 5-14-14-1 deep learning architecture, fine-tuned over 228 epochs, demonstrated strong performance with mean squared error (MSE) values of 4.07, 18.406, and 6.2122 for training, testing, and total datasets, respectively, and high R-squared values. Graphical analysis showed a solid linear correlation between experimental and simulated removal percentages, emphasizing the need to consider more than just testing data for optimization. Experimental validation confirmed a 98.77% removal efficiency, illustrating the effectiveness of combining deep learning with genetic algorithms, and highlighting the necessity of experimental trials to verify computational predictions. It is concluded that the carbonaceous material from Haematoxylum campechianum waste (CM-HC) is an effective, low-cost adsorbent for removing 3-nitrophenol from aqueous solutions, achieving optimal removal at pH 6 and 300.15 K with a maximum adsorption capacity of 236.156 mg/g, following Langmuir model and pseudo-second order kinetics. The validated ANN model offers a reliable tool for practical applications in environmental remediation, advancing both environmental science and educational innovation by integrating artificial neural networks and data science methodologies into student learning experiences.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11364776PMC
http://dx.doi.org/10.1038/s41598-024-70989-0DOI Listing

Publication Analysis

Top Keywords

deep learning
20
artificial neural
16
adsorption capacity
12
carbonaceous material
12
haematoxylum campechianum
12
neural networks
12
adsorption
10
environmental science
8
removing 3-nitrophenol
8
aqueous solutions
8

Similar Publications

Introduction: Diabetic retinopathy grading plays a vital role in the diagnosis and treatment of patients. In practice, this task mainly relies on manual inspection using human visual system. However, the human visual system-based screening process is labor-intensive, time-consuming, and error-prone.

View Article and Find Full Text PDF

Background: Sepsis is a life-threatening disease associated with a high mortality rate, emphasizing the need for the exploration of novel models to predict the prognosis of this patient population. This study compared the performance of traditional logistic regression and machine learning models in predicting adult sepsis mortality.

Objective: To develop an optimum model for predicting the mortality of adult sepsis patients based on comparing traditional logistic regression and machine learning methodology.

View Article and Find Full Text PDF

Sepsis remains a leading cause of morbidity and mortality worldwide due to its rapid progression and heterogeneous nature. This review explores the potential of Artificial Intelligence (AI) to transform sepsis management, from early detection to personalized treatment and real-time monitoring. AI, particularly through machine learning (ML) techniques such as random forest models and deep learning algorithms, has shown promise in analyzing electronic health record (EHR) data to identify patterns that enable early sepsis detection.

View Article and Find Full Text PDF

Individualized treatment recommendations for patients with locally advanced head and neck squamous cell carcinoma utilizing deep learning.

Front Med (Lausanne)

January 2025

Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji Research Institute of Stomatology, Department of Prosthodontics, Shanghai Tongji Stomatological Hospital, Dental School, Tongji University, Shanghai, China.

Background: The conventional treatment for locally advanced head and neck squamous cell carcinoma (LA-HNSCC) is surgery; however, the efficacy of definitive chemoradiotherapy (CRT) remains controversial.

Objective: This study aimed to evaluate the ability of deep learning (DL) models to identify patients with LA-HNSCC who can achieve organ preservation through definitive CRT and provide individualized adjuvant treatment recommendations for patients who are better suited for surgery.

Methods: Five models were developed for treatment recommendations.

View Article and Find Full Text PDF

Preeclampsia is one of the leading causes of maternal and perinatal morbidity and mortality. Early prediction is the need of the hour so that interventions like aspirin prophylaxis can be started. Nowadays, machine learning (ML) is increasingly being used to predict the disease and its prognosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!