This study investigated phytic acid (IP6) effect on chemical, structural, and mechanical characteristics of nickel-titanium (NiTi) files. The tested files were equally divided into groups according to the immersion protocol: sodium hypochlorite (NaOCl), ethylenediaminetetraacetic acid (EDTA), IP6, EDTA followed by NaOCl, and IP6 followed by NaOCl. These groups were then compared in terms of Ni, Ti, and chromium (Cr) ions release from the files. Microstructural changes using field emission scanning electron microscope (Fe-SEM) and energy dispersive X-ray spectroscopy (EDX) and surface roughness were analyzed. The mechanical characterization was conducted using cyclic fatigue resistance test. Fractured segments were scanned under SEM. Statistical analysis was performed using one-way ANOVA, Tukey test, Kruskal-Wallis test and Mann-Whitney U test. Results showed that NaOCl caused significant release of Cr, followed by IP6 and EDTA (P < 0.05). When files were pre-immersed in EDTA, NaOCl tended to induce less release of Ti and Cr. EDX evaluation revealed that the main surface elements were Ni, Ti, carbon, and oxygen. EDTA group contained the highest amount of carbon, while the control group showed the lowest. Surface roughness evaluation revealed no significant differences between groups despite the minor increases after immersion in certain groups. Black areas were observed in the NaOCl group which indicated corrosion. However, the cyclic fatigue test showed no significant differences between the groups.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11364813 | PMC |
http://dx.doi.org/10.1038/s41598-024-69828-z | DOI Listing |
Food Sci Nutr
January 2025
International Magnesium Institute, College of Resources and Environment Fujian Agriculture and Forestry University Fuzhou China.
Sweet corn ( L. ) is gaining global popularity as a staple crop and a vegetable due to its high nutritional value. However, information on grain magnesium (Mg) and calcium (Ca) status and their response to phosphorus (P) fertilization in sweet corn is still insufficient.
View Article and Find Full Text PDFJ Food Sci Technol
January 2025
Grain Science and Technology Division, Defence Food Research Laboratory, Mysore, Karnataka 570011 India.
This study aimed to compare thirteen different varieties of hyacinth beans analyzedfor their nutritional and antinutritional constituents. The study classified HA-3, HA-4, and Kadale Avare as Lignosus varieties, while the remaining varieties Arka, Pusa, CO, and NS, were classified as Typicus. The protein content ranged from 19.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
The sustainable flame retardancy of polymeric materials is a key focus for the direction of the next generation in the field of fire safety. Bio-derived flame retardants are gaining attention as environmentally friendly additives due to their low ecological impact and decreasing costs. These compounds can enhance char formation in polymeric materials by swelling upon heating, attributed to their functional groups.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Laboratory of Physical Chemistry of Materials (LCPM), Campus Fanar, Faculty of Sciences II, Lebanese University, Fanar, Jdeidet P.O. Box 90656, Lebanon.
Increasing the flame retardancy of lignocellulosic materials such as × can effectively enable their wide use. This study examines the fireproofing process of Miscanthus particles using an eco-friendly process by grafting phytic acid and urea in aqueous solution. Miscanthus particles underwent a steam explosion step before being grafted.
View Article and Find Full Text PDFMolecules
January 2025
N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky Prosp. 31, 119991 Moscow, Russia.
The interaction of sodium phytate hydrate CHOP·xNa·yHO (phytNa) with Cu(OAc)·HO and 1,10-phenanthroline (phen) led to the anionic tetranuclear complex [Cu(HO)(phen)(phyt)]·2Na·2NH·32HO (), the structure of the latter was determined by X-ray diffraction analysis. The phytate is completely deprotonated; six phosphate fragments (with atoms P1-P6) are characterized by different spatial arrangements relative to the cyclohexane ring (1a5e conformation), which determines two different types of coordination to the complexing agents-P1 and P3, P4, and P6 have monodentate, while P2 and P5 are bidentately bound to Cu cations. The molecular structure of the anion complex is stabilized by a set of strong intramolecular hydrogen bonds involving coordinated water molecules.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!