Deciphering macrobenthic biological traits in response to long-term eutrophication in Xiangshan Bay, China.

Sci Rep

Department of Marine Organism Taxonomy & Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.

Published: August 2024

As an emerging global issue in coastal marine ecosystems, eutrophication may lead to profound ecological consequences or disasters. Six locations in Xiangshan Bay were sampled during 2012-2022 along the eutrophication gradient from the innermost bay with the most eutrophication to the outer bay with the least eutrophication. A trait-based method was adopted to explore the ecological effects of eutrophication on macrobenthic communities. The results showed that the community composition is mostly characterized by deposit feeders and predators with small (1-3 cm) and large (> 10 cm) body sizes, classified as indifferent and tolerant species (AMBI ecological groups), deposit feeders and predators (feeding mode), and a preference for a free living lifestyle. The RLQ and fourth-corner analyses further confirmed that there was a negative correlation between the abundance of small macrobenthic organisms (< 1 cm) and nitrate concentration. Phosphorus was a crucial influencing factor for macrobenthic spatial patterns and was strongly affected by the activities of deposit feeders and the decomposition of macrobenthos. Due to mass organic deposition resulting from increased primary production, long-term eutrophication had led to an increase in the proportion of detritus feeders. In addition, the significant negative correlation between the concentration of dissolved oxygen and first-order opportunistic species represented by the polychaete Capitella capitata indicated tolerance to hypoxia. The macrobenthic community in Xiangshan Bay had been negatively affected but maintains considerable stability in functional diversity and functional redundancy under the influence of long-term eutrophication.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11364632PMC
http://dx.doi.org/10.1038/s41598-024-71239-zDOI Listing

Publication Analysis

Top Keywords

xiangshan bay
8
bay eutrophication
8
deposit feeders
8
feeders predators
8
eutrophication
6
deciphering macrobenthic
4
macrobenthic biological
4
biological traits
4
traits response
4
response long-term
4

Similar Publications

Xiangshan Bay, one of China's most eutrophic semi-enclosed bays, was studied to examine the seasonal distributions of salinity, temperature, nutrients, and nitrate isotopes (δN and δO) to elucidate seasonal variations in nitrate sources and the key factors driving nitrogen level fluctuations. Based on nitrate δN (6.1-8.

View Article and Find Full Text PDF

Coastal oceans, serving as transitional zones between land and sea, possess unique geographical features and complex hydrological conditions, functioning as regional reservoirs and crucial transport pathways for anthropogenic pollutants such as per- and polyfluoroalkyl substances (PFASs) to the open ocean. This study comprehensively investigates traditional perfluoroalkyl carboxylic and sulphonic acids (PFCAs and PFSAs) and emerging perfluoroalkyl ether carboxylic and sulfonic acids (PFECAs and PFESAs), fluorotelomer sulfonates (FTSAs) in seawater columns and surface sediments from the inner shelf of the East China Sea, by integrating hydrological and biogeochemical data. Comparable levels of traditional and emerging PFASs were observed in seawater samples, in contrast to higher concentrations of traditional PFASs in surface sediments.

View Article and Find Full Text PDF
Article Synopsis
  • Mariculture is important for food and jobs but can pollute coastal waters, causing problems for nature and communities.
  • This study looked at how mariculture waste affects water quality in Xiangshan Bay, especially focusing on certain types of matter and bacteria in the water.
  • The findings showed that mariculture waste greatly changes the water's natural balance and the types of bacteria living in it, suggesting that it is the main source of pollution in the bay.
View Article and Find Full Text PDF

Anastatus orientalis Yang & Choi (Hymenoptera: Eupelmidae), an egg parasitoid of spotted lanternfly, Lycorma delicatula (White) (Hemiptera: Fulgoridae), has been documented emerging from host eggs in both autumn and spring, at the beginning and end of the period that spotted lanternfly eggs are present in the field, suggesting parasitoid-host specificity and synchrony. This study was designed to test whether, under conditions that simulate native and introduced ranges of spotted lanternfly, (a) A. orientalis has 2 and only 2 generations per year, (b) A.

View Article and Find Full Text PDF

Deciphering macrobenthic biological traits in response to long-term eutrophication in Xiangshan Bay, China.

Sci Rep

August 2024

Department of Marine Organism Taxonomy & Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.

As an emerging global issue in coastal marine ecosystems, eutrophication may lead to profound ecological consequences or disasters. Six locations in Xiangshan Bay were sampled during 2012-2022 along the eutrophication gradient from the innermost bay with the most eutrophication to the outer bay with the least eutrophication. A trait-based method was adopted to explore the ecological effects of eutrophication on macrobenthic communities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!