A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Machine-Learning-Accelerated DFT Conformal Sampling of Catalytic Processes. | LitMetric

Machine-Learning-Accelerated DFT Conformal Sampling of Catalytic Processes.

J Chem Theory Comput

CNR-ICCOM, Consiglio Nazionale delle Ricerche, via Giuseppe Moruzzi 1, Pisa 56124, Italy.

Published: November 2024

Computational modeling of catalytic processes at gas/solid interfaces plays an increasingly important role in chemistry, enabling accelerated materials and process optimization and rational design. However, efficiency, accuracy, thoroughness, and throughput must be enhanced to maximize its practical impact. By combining interpolation of DFT energetics via highly accurate Machine-Learning Potentials with conformal techniques for building the training database, we present here an original approach (that we name Conformal Sampling of Catalytic Processes, CSCP), to accelerate and achieve an accurate and thorough sampling of novel systems by exporting existing information on a worked-out case. We use methanol decomposition (of interest in the field of hydrogen production and storage) as a test catalytic reaction. Starting from worked-out Pt-based systems, we show that after only two iterations of active-learning CSCP is able to provide reaction energy diagrams for a set of 7 diverse systems (Pd, Ni, Au, Ag, Cu, Co, Fe) leading to DFT-accuracy-level predictions. Cases exhibiting a change in adsorption sites and mechanisms are also successfully reproduced as tests of catalytic path modification. The CSCP approach thus offers itself as an operative tool to fully take advantage of accumulated information to achieve high-throughput sampling of catalytic processes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.4c00643DOI Listing

Publication Analysis

Top Keywords

catalytic processes
16
sampling catalytic
12
conformal sampling
8
catalytic
6
machine-learning-accelerated dft
4
dft conformal
4
sampling
4
processes
4
processes computational
4
computational modeling
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!