The synthesis of sulfur-doped exfoliated graphitic carbon nitride (S-gCN) photocatalyst was achieved by the implementation of a two-step calcination technique. The XRD results revealed that all the fabricated photocatalytic materials were crystalline in nature. The inclusion of 5% sulfur in gCN led to a conspicuous escalation in the surface area of photocatalyst, rising from 10.294 to 61.185 mg⁻. Morphological scrutiny of the samples using FE-SEM revealed that pristine gCN exhibited tightly stacked small nanosheets, whereas inclusion of sulfur and exfoliation resulted in generation of loosely distributed large nanosheet. Furthermore, the inclusion of sulfur also induced a shift in the energy band gap (Eg) from 2.81 eV to 2.63 eV, making it felicitous for investigation as proficient visible light photocatalyst. Additionally, the photoluminescence photo-induced charge carrier recombination behavior revealed a reduced peak intensity for 5% S-gCN compared to other synthesized compositions. This observation can be directly linked to the minimized electron-hole pairs recombination during photocatalysis, underscoring its superior photocatalytic performance. Our findings revealed that the 5% S-gCN photocatalyst exhibit the most promising attributes, it degraded Tetracycline drug, Chlorpyrifos pesticide and Eriochrome Black T dye under visible light irradiation almost ∼4 times more efficiently than pristine gCN. Additionally, exceptional visible light photocatalytic antibacterial efficacy was also perceived by 5% S-gCN against S. aureus bacteria. Overall, the present research sheds light on how doping and exfoliation interact to modify the structure and catalytic properties of gCN, paving the way for the development of outstanding performance, visible light-responsive efficient photocatalysts for environmental restoration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2024.143178 | DOI Listing |
Viruses
December 2024
The Sheba Pandemic Preparedness Research Institute (SPRI), Sheba Medical Center, Tel Hashomer, Ramat Gan 52621, Israel.
Background/objectives: Millions of individuals worldwide continue to experience symptoms following SARS-CoV-2 infection. This study aimed to assess the prevalence and phenotype of multi-system symptoms attributed to Long COVID-including fatigue, pain, cognitive-emotional disturbances, headache, cardiopulmonary issues, and alterations in taste and smell-that have persisted for at least two years after acute infection, which we define as "persistent Long COVID". Additionally, the study aimed to identify clinical features and blood biomarkers associated with persistent Long COVID symptoms.
View Article and Find Full Text PDFViruses
December 2024
Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 48, I-50134 Florence, Italy.
Background: Understanding the interference patterns of respiratory viruses could be important for shedding light on potential strategies to combat these human infectious agents.
Objective: To investigate the possible interactions between adenovirus type 2 (AdV2), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A/H1N1 pandemic (H1N1pdm09) using the A549 cell line.
Methods: Single infections, co-infections, and superinfections (at 3 and 24 h after the first virus infection) were performed by varying the multiplicity of infection (MOI).
Viruses
December 2024
Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
Photodynamic inactivation (PDI) has been revealed as a valuable approach against viral infections because of the fast therapeutic effect and low possibility of resistance development. The photodynamic inhibition of the infectivity of human herpes simplex virus type 1 (HSV-1) strain Victoria at different stages of its reproduction was studied. PDI activity was determined on extracellular virions, on the stage of their adsorption to the Madin-Darby bovine kidney (MDBK) cell line and inhibition of the viral replication stage by application of two tetra-methylpyridiloxy substituted gallium and zinc phthalocyanines (ZnPcMe and GaPcMe) upon 660 nm light exposure with a light-emitting diode (LED 660 nm).
View Article and Find Full Text PDFViruses
December 2024
Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China.
The ongoing global health crisis caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) necessitates the continuous development of innovative vaccine strategies, especially in light of emerging viral variants that could undermine the effectiveness of existing vaccines. In this study, we developed a recombinant virus-like particle (VLP) vaccine based on the Newcastle Disease Virus (NDV) platform, displaying a stabilized prefusion form of the SARS-CoV-2 spike (S) protein. This engineered S protein includes two proline substitutions (K986P, V987P) and a mutation at the cleavage site (RRAR to QQAQ), aimed at enhancing both its stability and immunogenicity.
View Article and Find Full Text PDFViruses
December 2024
Institute of Hygiene and Environmental Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany.
Among the physical decontamination methods, treatment with ultraviolet (UV) radiation is a suitable means of preventing viral infections. Mercury vapor lamps (254 nm) used for room decontamination are potentially damaging to human skin (radiation) and harmful to the environment (mercury). Therefore, other UV-C wavelengths (100-280 nm) may be effective for virus inactivation on skin without damaging it, e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!