Origins of atmospheric nitrous acid and their contributions to OH radical from ship plumes, marine atmosphere, and continental air masses over South China Sea.

Sci Total Environ

School of Atmospheric Sciences, Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Zhuhai, Guangdong 519082, China; Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Zhuhai, Guangdong 519082, China; Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai, Guangdong 519082, China. Electronic address:

Published: November 2024

Nitrous acid (HONO) is an important source of atmospheric hydroxyl radical (OH). However, HONO abundance in the marine boundary layer remain largely unknown. Here, ship-based measurements were performed to characterize the origins of HONO from ship plumes, marine atmosphere, and continental emissions over South China Sea (SCS) during September 2021. The results showed that the HONO concentrations were measured at substantial levels (1.0 ± 0.8 ppbv) in polluted plumes due to generally high NO concentrations (52.3 ± 52.5 ppbv). Comparably, much lower HONO concentrations (0.086 ± 0.102 ppbv) were observed for marine atmosphere. During nighttime, the heterogeneous conversion of NO was the predominant source of HONO and occurred mainly on the sea surfaces through NO deposition. The HONO yield from this deposition (the proportion of NO that was converted to HONO) was 0.08 and 0.06 for the marine atmosphere and continental emissions, respectively. In contrast, daytime known HONO formation of marine atmospheric origins was mainly attributed to homogeneous OH + NO reaction, although the contribution of heterogeneous NO conversion might not be negligible. Approximately half of HONO sources during daytime are unknown, which were likely from photo-enhanced NO conversation on the sea surfaces. Our results showed that for marine atmosphere and ship plumes, the daily contributions of HONO photolysis to OH radical formation were about 20.8 % and 72.2 %, respectively, while the contributions from ozone photolysis were 79.2 % and 27.8 %. An average HONO concentration of 0.17 ppbv was measured in close shore regions when air masses originated from mainland China, with the contributions from HONO and ozone to OH radical of 21.4 % and 78.6 % respectively, similar to those for the marine atmosphere. This study suggests that HONO in the SCS has various sources (e.g., marine atmosphere, ship plumes, and continental emissions) and makes significant contributions to the OH abundance which affects the oxidation capacity in this area.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.175841DOI Listing

Publication Analysis

Top Keywords

marine atmosphere
28
ship plumes
16
hono
14
atmosphere continental
12
continental emissions
12
marine
9
nitrous acid
8
plumes marine
8
air masses
8
south china
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!