The study of mussels (Mytilus galloprovincialis) has grown in importance in recent years due to their high economic value and resistance to pathogens. Because of the biological characteristics revealed by mussel genome sequencing, this species is a valuable research model. The high genomic variability and diversity, particularly in immune genes, may be responsible for their resistance to pathogens found in seawater and continuously filtered and internalized by them. These facts, combined with the lack of proven mussel susceptibility to viruses in comparison to other bivalves such as oysters, result in a lack of studies on mussel antiviral response. We used RNA-seq to examine the genomic response of mussel hemocytes after they were exposed to poly I:C, simulating immune cell contact with viral dsRNA. Apoptosis and the molecular axis IRFs/STING-IFI44/IRGC1 were identified as the two main pathways in charge of the response but we also found a modulation of lncRNAs. Finally, in order to obtain new information about the response of mussels to putative natural challenges, we used VHSV virus (Viral Hemorrhagic Septicemia Virus) to run some functional analysis and confirm poly I:C's activity as an immunomodulator in a VHSV waterborne stimulation. Both, poly I:C as well as an injury stimulus (filtered sea water injection) accelerated the viral clearance by hemocytes and altered the expression of several immune genes, including IL-17, IRF1 and viperin.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fsi.2024.109867DOI Listing

Publication Analysis

Top Keywords

functional analysis
8
antiviral response
8
response mussels
8
resistance pathogens
8
immune genes
8
response
5
transcriptomic functional
4
analysis antiviral
4
poly
4
mussels poly
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!